integrate dx/sin^2 x cos^2 x
Answers
Answered by
11
Hey your answer is -2cot2x +C
Attachments:
Answered by
3
Answer :
Now, sin²x cos²x
= 1/4 (4 sin²x cos²x)
= 1/4 (2 sinx cosx)²
= 1/4 (sin2x)²
= 1/4 sin²2x
Now, ∫ dx/(sin²x cos²x)
= 4 ∫ dx/sin²2x
= 4 ∫ cosec²2x dx
= - 4 ∫ (- cosec²2x) dx
= -4/2 ∫ d (cot2x)
= - 2 cot2x + c, where c is integral constant
#MarkAsBrainliest
Now, sin²x cos²x
= 1/4 (4 sin²x cos²x)
= 1/4 (2 sinx cosx)²
= 1/4 (sin2x)²
= 1/4 sin²2x
Now, ∫ dx/(sin²x cos²x)
= 4 ∫ dx/sin²2x
= 4 ∫ cosec²2x dx
= - 4 ∫ (- cosec²2x) dx
= -4/2 ∫ d (cot2x)
= - 2 cot2x + c, where c is integral constant
#MarkAsBrainliest
Similar questions