Math, asked by saina1234, 1 year ago

integrate dx/x^2-6x+11

Answers

Answered by Ruhanika105
5
Hey!

= ∫ dx / x² - 6x + 11

= ∫ dx / x² - 2. 3. x + 9 + 2
= ∫ dx / (x-3)^2 + (√2)^2

using the formula,
∫ dx / x² + a² = 1/a tan^-1 (x/a) + C

= 1/√2 tan^-1 ( x-3 / √2 ) + C

Hope it helps!




saina1234: thank u so much
Ruhanika105: ur wlcm :)
Answered by tarracharan
1

\large{→} {\large{\boxed{\sf{∫\frac{1}{x²-6x+11}.dx}}}}

\large{=} {\large{\boxed{\sf{∫\frac{1}{x²-6x+9+2}.dx}}}}

\large{=} {\large{\boxed{\sf{∫\frac{1}{(x-3)²+(\sqrt{2})²}.dx}}}}

{\large{\boxed{\red{\sf{∫\frac{1}{x²+a²}.dx=\frac{1}{a}Tan^{-1} (\frac{x}{a})+c}}}}}

\large{=} {\large{\boxed{\sf{\frac{1}{\sqrt{2}}Tan^{-1} (\frac{x-3}{\sqrt{2}})+c}}}}

Similar questions