Math, asked by taylor1319, 1 month ago

integrate e^(3x-1) dx​

Answers

Answered by brainlyhero98
3

Answer:

 \frac{1}{3}  {e}^{(3x - 1)}

Step-by-step explanation:

put\:\:3x - 1 = t \\ differentiating \: w.r.t \:  \: x, \\ 3dx = dt \\ dx =  \frac{1}{3} dt

 \int {e}^{(3x - 1)}dx  =  \int  {e}^{t}. \frac{1}{3}  dt \\  =   \frac{1}{3} \int {e}^{t} dt \\   = \frac{1}{3}  {e}^{t}  \\  =  \frac{1}{3}  {e}^{(3x - 1)}

Answered by RISH4BH
32

Answer:

\boxed{\red{\displaystyle\sf \int e^{3x-1} = \dfrac{1}{3}e^{3x-1}+C}}

Step-by-step explanation:

● We need to integrate the given function. The given function is ,

\sf\red{\dashrightarrow} e^{(3x-1)} dx

  • Now for Integrating , substitute u = 3x - 1 . Therefore , differenciating both sides wrt x , we have ,

\sf\red{\dashrightarrow} \dfrac{ du}{dx}=\dfrac{d}{dx}(3x-1) \\\\\sf\red{\dashrightarrow} \dfrac{ du}{dx}= 3\\\\\sf\red{\dashrightarrow}  \boxed{ \sf dx =\dfrac{du}{3} }

  • Now substituting this value , we have ,

\displaystyle\sf\red{\dashrightarrow} I =\int e^{3x-1} .dx \\\\\displaystyle\sf\red{\dashrightarrow } I = \int e^u \dfrac{du}{3}  \\\\\displaystyle\sf\red{\dashrightarrow } I = \dfrac{1}{3}\int e^u . du  \\\\\displaystyle\sf\red{\dashrightarrow } I = \dfrac{1}{3}\bigg( e^u + C \bigg)  \\\\\displaystyle\sf\red{\dashrightarrow } \boxed{\pink{\sf I = \dfrac{1}{3}e^{3x-1}+C}}

Similar questions