Math, asked by archMangeasmile9eli, 1 year ago

integrate e- tan-1x (1+x+x 2 /1+x 2 )dx

Answers

Answered by duragpalsingh
137
Hope it is clear to you.
Attachments:

duragpalsingh: click on thanks link above
Answered by suchindraraut17
17

Answer:

= x \times e^{tan^{-1} x}

Step-by-step explanation:

We have been given to integrate the following :

e^{tan^{-1}x } \times (\frac{1 +x + x^{2} }{1+x^{2} } )\int\limits^ {} [tex]e^{tan^{-1}tant } \,  \times \frac{(1 + tant + tan^{2}t) }{1 + tan^{2}t } dt

Let us assume that :

x = tan t

dx = sec^{2} t dt

e^{tan^{-1}tant } \,  \times \frac{(1 + tant + tan^{2}t) }{1 + tan^{2}t } dt

\int\limits^ {} \, e^{t} \times\frac{1 + tant + tam^{2}t }{1 + tan^{2}t } \times sec^{2} t dt

e^{t}  \times (\frac{sec^{2}t + tant  }{sec^{2}t } ) \times sec^{2} t dt

e^{t} sec^{2} t + e^{t} tant

Now, evaluating by parts:

e^{t} tant = tant \times\int\limits^{} e^{t} \, dt - \int\limits^ {}(sec^{2} t \, \int\limits^{} e^{t} dt)\, dt</p><p>[tex]e^{t} tant = tant \times\int\limits^{} e^{t} \, dt - \int\limits^ {}(sec^{2} t \, \int\limits^{} e^{t} dt)\, dt + e^{t} sec^{2} t dt

= e^{t} tant

Now , put t = tan^{-1} x

e^{tan^{-1}x } \times tantan^{-1} x

= x \times e^{tan^{-1} x}

∴ The final answer will be = x \times e^{tan^{-1} x}

Similar questions