Math, asked by jaskiratgill2003, 2 months ago

integrate e^x(2-x /(1-x)^2)dx

Answers

Answered by mathdude500
2

We know,

1.  \: \boxed{ \pink{ \rm \: {e}^{x} (f(x) \:  +  \: f'(x)) \:  =  \:  {e}^{x} \: f(x)   \:  +  \: c}}

Consider,

\rm :  \implies \: Let \: I \:  =   \int \:  {e}^{x}\dfrac{2 - x}{ {(1 - x)}^{2} }  dx

\rm :  \implies \:   \int \:  {e}^{x}\dfrac{1 + 1 - x}{ {(1 - x)}^{2} }  dx

\rm :  \implies \:   \int \:  {e}^{x}\dfrac{1 + (1 - x)}{ {(1 - x)}^{2} }  dx

\rm :  \implies \:   \int \:  {e}^{x} \bigg(\dfrac{1}{ {(1 - x)}^{2} }  + \dfrac{(1 - x)}{ {(1 - x)}^{2} }  \:  \bigg)

\rm :  \implies \:   \int \:  {e}^{x} \bigg(\dfrac{1}{ {(1 - x)}^{2} }  + \dfrac{1 }{ {(1 - x)}}  \:  \bigg)

 \bf \: Let \: f(x) \:  =  \: \dfrac{1}{1 - x}

On differentiating w. r. t. x both sides, we get

\rm :  \implies \: f'(x) \:  = \dfrac{d}{dx} {(1 - x)}^{ - 1}

\rm :  \implies \: f'(x) \:  =  \:  - 1 \:  {(1 - x)}^{ - 2} \dfrac{d}{dx} (1 - x)

\rm :  \implies \: f'(x) \:  =  \:  - 1 \:  \times  {(1 - x)}^{ - 2} ( - 1)

\rm :  \implies \: f'(x) \:  =  \:   \:  {(1 - x)}^{ - 2}

\rm :  \implies \: f'(x) \:  =  \: \dfrac{1}{ {(1 - x)}^{2} }

Hence,

\rm :  \implies \:   \int \:  {e}^{x} \bigg(\dfrac{1}{ {(1 - x)}^{2} }  + \dfrac{1 }{ {(1 - x)}}  \:  \bigg) =  {e}^{x} \dfrac{1}{1 - x}  + c

Similar questions