Math, asked by shemeenabasheer, 4 months ago

Integrate from -5 to 5 |x+2| dx

please give me the steps also ​

Answers

Answered by sharvarikadam55
1

Answer:

Questions Tags Users Badges Ask

Up vote

6

Down vote

Steps in evaluating the integral of complementary error function?

integration special-functions

Could you please check the below and show me any errors?

∫∞xerfc (t) dt =∫∞x[2π−−√∫∞te−u2du] dt

If I let dv=dt and u equal the term inside the bracket, and do integration by parts,

∫u dv =uv−∫v du

v=t and du becomes

−2π−−√e−t2

This was obtained from using the Leibniz rule below,

ddt[∫baf(u)du] =∫baddtf(u)du+fdbdt−fdadt

Then,

ddt[2π−−√∫∞te−u2du] =2π−−√[∫∞tddt(e−u2)du+e−∞2∗0−e−t2∗1]=2π−−√[0 + 0 −e−t2]

Is the first and second term going to zero correct? The upper limit b=infinity, and is db/dt=0 in the second term correct?

The integral becomes

[ t 2π−−√∫∞te−u2du ]∞x+∫∞xt[2π−−√e−t2] dt=

[ t 2π−−√∫∞te−u2du ]∞x−[1π−−√e−t2]∞x=

[0− x 2π−−√∫∞xe−u2du ]−[0−1π−−√e−x2]=

Answered by PharohX
2

GIVEN:-

 \sf \int \limits_{ - 5}^{5}  |x + 2| dx \\

SOLUTION :-

\sf \int \limits_{ - 5}^{5}  |x + 2| dx \\

  • Here first we have to find the limits

\sf \: |x + 2| = \begin{cases} \sf - (x + 3)& \sf{if\: x  <  - 3} \\ \sf \:  \: \: \:  (x + 3) & \sf{if\: x >  - 3 }\end{cases}

 \sf \int \limits_{ - 5}^{ 5}  |x + 2| dx  = \\

 \sf \: \int \limits_{ - 5}^{ - 3}  - ( x + 2)dx + \int \limits_{ - 3}^{5}  (x + 2) dx \\

 =  \sf \:  - \int \limits_{ - 5}^{ - 3}   ( x + 2)dx + \int \limits_{ - 3}^{5}  (x + 2) dx \\

     =  \sf  - \bigg(  \frac{ {x}^{2} }{2} + 2x  \bigg)^{ - 3} _{ - 5} + \bigg(  \frac{ {x}^{2} }{2} + 2x  \bigg)^{ 5} _{ - 3} \\

     =  \sf  - \bigg(  \frac{ {( - 3)}^{2} }{2} + 2( - 3)  -   \frac{( - 5) {}^{2} }{2} - 2( - 5)  \bigg)+  \\  \\  \sf\bigg(  \frac{ {5}^{2} }{2} + 2(5) -  \frac{( - 3) {}^{2} }{2}  - 2( - 3)  \bigg) \\

     =  \sf  - \bigg(  \frac{ 9}{2}   -   \frac{ 2 5 }{2} - 6  + 10  \bigg)+   \sf\bigg(  \frac{ 25 }{2}-  \frac{9 }{2}   + 10   + 6 \bigg) \\

     =  \sf  \bigg(   - \frac{ 9}{2}   -  \frac{9 }{2}  +  \frac{ 2 5 }{2} + \frac{ 2 5 }{2}    +  6   -  10    + 10   + 6 \bigg) \\

 =  \sf \:  - 9 + 25 + 12

 =  \sf \:  28

Ans.....

Similar questions