integrate integration of (3x+1)√4x^2+12x+5 dx
Answers
To Integrate :
∫(3x+1)√4x^2+12x+5 dx
Solution :
∫(3x+1)√4x²+12x+5 dx is of the form P√Q
•So we'll express P in the form of Q such that
3x+1 = A( d(4x²+12x+5 )/dx ) + B
3x+1 = A( 8x + 12 ) + B ___(1)
3x+1 = 8Ax + 12A + B
3x+1 = 8Ax + (12A + B )
•By comparing 8A = 3 & 12A + B = 1
A = 3/8 & 12(3/8)+B = 1
A = 3/8 & 9/2 + B = 1
A = 3/8 & B = -7/2
•Hence ,
3x+1 = 3/8( 8x + 12 ) -7/2 ___(from 1)
=> ∫(3x+1)√4x²+12x+5 dx =
[ 3/8( 8x + 12 ) -7/2 ]√4x²+12x+5 dx
= 3/8∫(8x+12)√4x²+12x+5 dx
-7/2 ∫√4x²+12x+5 dx _____(2)
•Now , 3/8∫(8x+12)√4x²+12x+5 dx =
let 4x²+12x+5 = t
(8x+12)dx = dt
=> 3/8∫(8x+12)√4x²+12x+5 dx =
3/8 ∫√t dt
= 3/8( t^³/² )/(3/2)+ K
= ( t^³/² )/4 + K
=[ (4x²+12x+5)³/² ] / 4 + K ____(3)
•And , -7/2 ∫√4x²+12x+5 dx =
Taking 4 common
= -7/2×2∫√(x²+3x+5/4) dx
Adding and subtracting 4/4
= -7 ∫√[ (x²+3x+5/4+4/4) -4/4 ] dx
= -7 ∫√[ (x²+3x+9/4) - 1 ]
= -7 ∫√[ (x + 3/2)² - 1² ]
= -7[ (x + 3/2)/2 √[ (x + 3/2)² - 1² ] -1/2ln |(x + 3/2) + √[ (x + 3/2)² - 1² ] | + M _____(4)
•Putting (3) & (4) in (1)
=> ∫(3x+1)√4x²+12x+5 dx =
[ (4x²+12x+5)³/² ] / 4 -7[ (x + 3/2)/2 √[ (x + 3/2)² - 1² ] -1/2ln |(x + 3/2) + √[ (x + 3/2)² - 1² ] | + C
• Hence ,∫(3x+1)√4x²+12x+5 dx =
[ (4x²+12x+5)³/² ] / 4 -7[ (x + 3/2)/2 √[ (x + 3/2)² - 1² ] -1/2ln |(x + 3/2) + √[ (x + 3/2)² - 1² ] | + C