Math, asked by bk98764311, 4 months ago

integrate it???.....​

Attachments:

Answers

Answered by mallu27
0

Answer:

sec^2

Step-by-step explanation:

this general identity of trignometric

Answered by shadowsabers03
8

Given to evaluate,

\displaystyle\longrightarrow I=\int\limits_0^{\pi}\dfrac{1}{1+2\tan x}\ dx

\displaystyle\longrightarrow I=\int\limits_0^{\pi}\dfrac{\sec^2x\ dx}{(1+2\tan x)(1+\tan^2x)}\quad\quad\dots(1)

Substitute,

\longrightarrow u=\tan x

\longrightarrow du=\sec^2\ dx

Then (1) becomes, (excluding the limits)

\displaystyle\longrightarrow I=\int\dfrac{1}{(1+2u)(1+u^2)}\ du\quad\quad\dots(2)

Let,

\longrightarrow\dfrac{1}{(1+2u)(1+u^2)}=\dfrac{2A}{1+2u}+\dfrac{2Bu+C}{1+u^2}

\longrightarrow 2A(1+u^2)+(2Bu+C)(1+2u)=1

\longrightarrow2(A+2B)u^2+2(B+C)u+(2A+C)=1

Equating corresponding coefficients,

\longrightarrow A+2B=0

\longrightarrow B+C=0

\longrightarrow 2A+C=1

Solving them we get,

\longrightarrow A=\dfrac{2}{5}

\longrightarrow B=-\dfrac{1}{5}

\longrightarrow C=\dfrac{1}{5}

Then (4) becomes,

\displaystyle\longrightarrow I=\int\left(\dfrac{2\cdot\frac{2}{5}}{1+2u}+\dfrac{2\cdot-\frac{1}{5}u+\frac{1}{5}}{1+u^2}\right)\ du

\displaystyle\longrightarrow I=\dfrac{2}{5}\int\dfrac{2\ du}{1+2u}-\dfrac{1}{5}\int\dfrac{2u\ du}{1+u^2}+\dfrac{1}{5}\int\dfrac{1}{1+u^2}\ du

\displaystyle\longrightarrow I=\dfrac{2}{5}\log|1+2u|-\dfrac{1}{5}\log\left(1+u^2\right)+\dfrac{1}{5}\tan^{-1}u

\displaystyle\longrightarrow I=\dfrac{1}{5}\left[\log\left(\dfrac{(1+2u)^2}{1+u^2}\right)+\tan^{-1}u\right]

Undoing u=\tan x, (including the limits)

\displaystyle\longrightarrow I=\dfrac{1}{5}\left[\log\left(\dfrac{(1+2\tan x)^2}{1+\tan^2x}\right)+x\right]_0^{\pi}

\displaystyle\longrightarrow I=\dfrac{1}{5}\left[\log\left(\dfrac{(1+0)^2}{1+0^2}\right)+\pi-\log\left(\dfrac{(1+0)^2}{1+0^2}\right)-0\right]

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{\pi}{5}}}

Similar questions