Math, asked by TheLifeRacer, 7 months ago

integrate it.

Important for 12th board

Attachments:

Answers

Answered by kaushik05
10

To integrate :

 \star \ \int \:  {sin}^{4} x \: dx

 \implies \:  \int \: ( {sin}^{2} x) ^{2} dx \\  \\  \implies \:  \int( \frac{1 - cos2x}{2} ) ^{2} dx \\  \\ \implies \:  \frac{1}{4}   \int \:   (1 - 2cos2x +  {cos}^{2} 2x)dx \\  \\  \implies \:  \frac{1}{4}  \int \: ( \frac{3}{2}  - 2cos2x +  \frac{1}{2} cos4x) \: dx \\  \\  \implies \:  \frac{1}{4} ( \frac{3}{2} x -  \frac{2}{2} sin2x +  \frac{1}{2}  \frac{sin4x}{4} ) + c \\  \\  \implies \:  \frac{3}{8} x -  \frac{sin2x}{4}  +  \frac{ sin4x}{32}  + c

Formula used :

 \star  \bold{\int \:  {x}^{n \: dx \:  =  \frac{ {x}^{n + 1} }{n + 1} } + c  } \\  \\   \star \bold{ \int \: sinx \: dx =  - cosx + c} \\  \\  \star   \bold{ \int  \: cosxdx = sinx \:  + c} \\  \\  \star  \: \bold{{sin}^{2} x =  \frac{1 - cos2x}{2} } \\  \\  \star \:   \bold{{cos}^{2} 2x =  \frac{cos4x + 1}{2}  }

Answered by rajdheerajcreddy
2

[Tex]\mathbb{Answer}[/tex]

Attachments:
Similar questions