Math, asked by patelaayushi2624, 1 day ago

integrate it .. please no wrong answers.​

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Given \:Question - }}

Evaluate

\displaystyle\int\rm  {e}^{x} \: \bigg(\dfrac{1 + sinx}{1 + cosx} \bigg) \: dx

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  {e}^{x} \: \bigg(\dfrac{1 + sinx}{1 + cosx} \bigg) \: dx

\rm \:  =  \:\displaystyle\int\rm {e}^{x}\bigg(\dfrac{1}{1 + cosx}  + \dfrac{sinx}{1 + cosx}  \bigg) \: dx

We know,

 \boxed{ \bf{ \: 1 + cos2x =  {2cos}^{2}x}}

and

 \boxed{ \bf{ \: sin2x = 2sinx \: cosx}}

So, using these, we get

\rm \:  =  \:\displaystyle\int\rm {e}^{x}\bigg(\dfrac{1}{2 {cos}^{2}  \dfrac{x}{2} }  + \dfrac{2sin\dfrac{x}{2}cos\dfrac{x}{2}}{2 {cos}^{2} \dfrac{x}{2}}  \bigg) \: dx

\rm \:  =  \:\displaystyle\int\rm {e}^{x}\bigg(\dfrac{1}{2 {cos}^{2}  \dfrac{x}{2} }  + \dfrac{sin\dfrac{x}{2}}{ {cos}^{} \dfrac{x}{2}}  \bigg) \: dx

\rm \:  =  \:\displaystyle\int\rm {e}^{x}\bigg(\dfrac{1}{2} {sec}^{2}\dfrac{x}{2} \:  +  \: tan\dfrac{x}{2}  \bigg) \: dx

Now, we know,

 \boxed{ \bf{ \: \dfrac{d}{dx}tan\dfrac{x}{2} =  \frac{1}{2}  {sec}^{2}\dfrac{x}{2}}}

and

 \boxed{ \bf{ \: \displaystyle\int\rm {e}^{x} \bigg(f(x) + f'(x) \bigg) \: dx \:  =  \: {e}^{x}f(x) + c}}

So, using these results, we get

\rm \:  =  \:{e}^{x}tan\dfrac{x}{2} \:  +  \: c

Hence,

 \boxed{ \bf{ \: \displaystyle\int\bf  {e}^{x} \: \bigg(\dfrac{1 + sinx}{1 + cosx} \bigg) \: dx = {e}^{x} \: tan\dfrac{x}{2} \:  +  \: c}}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions