integrate it plzzz...
Answers
AnswEr :—
Given that,
Points P(p,-2) and Q(5/3,q) trisect the line AB.
The given points are A(3,-4) and B(1,2)
Now,
P(p,-2) divides the line in the ratio 1:2.
By using Sector's formula,
Thus,
Therefore,
Also,
Q is the midpoint of line PB.
By using Midpoint formula,
Thus,
Therefore,
• The values of p and q are 7/3 and 0 respectively
Answer:
Points P(p,-2) and Q(5/3,q) trisect the line AB.
The given points are A(3,-4) and B(1,2)
Now,
P(p,-2) divides the line in the ratio 1:2.
By using Sector's formula,
\star \ \boxed{\boxed{\sf Z(x,y) = \bigg(\dfrac{nx_2 + mx_1}{m + n},\dfrac{ny_2 + my_1}{m + n} \bigg)}}⋆
Z(x,y)=(
m+n
nx
2
+mx
1
,
m+n
ny
2
+my
1
)
Thus,
\sf P(p,-2) = \bigg(\dfrac{1(1) + 3(2)}{1+2},\dfrac{2(1) -4(2)}{1+2} \bigg)P(p,−2)=(
1+2
1(1)+3(2)
,
1+2
2(1)−4(2)
)
Therefore,
\begin{gathered} \implies \sf p = \dfrac{1 + 6}{3} \\ \\ \implies \boxed{ \boxed{\sf p = \dfrac{7}{3} }}\end{gathered}
⟹p=
3
1+6
⟹
p=
3
7
Also,
Q is the midpoint of line PB.
By using Midpoint formula,
\star \ \boxed{\boxed{\sf Z(x,y) = \bigg( \dfrac{x_1 + x_2}{2},\dfrac{y_1 + y_2}{2} \bigg)}}⋆
Z(x,y)=(
2
x
1
+x
2
,
2
y
1
+y
2
)
Thus,
\sf Q(\dfrac{5}{3},q) = \bigg(\dfrac{\frac{7}{3} + 1}{2},\dfrac{-2 + 2}{1+2} \bigg)Q(
3
5
,q)=(
2
3
7
+1
,
1+2
−2+2
)
Therefore,
\begin{gathered} \implies \sf \: q = \dfrac{2 - 2}{2} \\ \\ \implies \boxed{ \boxed{ \sf q = 0}}\end{gathered}
⟹q=
2
2−2
⟹
q=0
• The values of p and q are 7/3 and 0 respectively
Step-by-step explanation: