Math, asked by coolestcat, 5 months ago

integrate it plzzz... ​

Attachments:

Answers

Answered by BrainlyEmpire
3

\Huge{\sf Kinematic \ Equations :}

These equations are only to be applied when an object is executing Uniform Motion

We have to derive s = ut +½at²

W.K.T,

We would need displacement in our equation. So,

 \sf \: v =  \dfrac{ds}{dt}   \\  \\  \longrightarrow \:  \sf \: ds = vdt

But v = u + at

 \longrightarrow \:  \sf \: ds = (u + at)dt

Applying Integral on both sides of the equation,

 \longrightarrow \displaystyle  \sf \: \int^{s}_{0}s \:   =  \int^{t}_{0} u.dt +  \int^{t}_{0}at.dt \\  \\  \longrightarrow \:  \sf \bigg[s \bigg]^{s}_{0} \:  = u\bigg[t \bigg]^{t}_{0} + a\bigg[ \dfrac{ {t}^{2} }{2}  \bigg]^{t}_{0} \\  \\  \longrightarrow \:  \sf \: s - 0 = u(t - 0) +  \dfrac{1}{2} a( {t}^{2}  - 0) \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf \: s = ut +  \frac{1}{2} at {}^{2} }}

\rule{300}{2}

We have to derive v² - u² = 2as

W.K.T,

 \sf \: a =  \dfrac{dv}{dt}  \\  \\  \longrightarrow \:  \sf \: a =  \dfrac{dv}{dt}  \times  \dfrac{ds}{ds}  \\  \\  \longrightarrow \:  \sf \: a = v \dfrac{dv}{ds}  \\  \\  \longrightarrow \:  \sf \: a.ds = v.dv

Integrating on both sides,

 \longrightarrow \:  \displaystyle  \sf  \int^v_u \: v.dv =  a\int^s_0ds \\  \\  \longrightarrow \:  \sf \: \bigg[ \dfrac{ {v}^{2} }{2}  \bigg]^v_u = a \bigg[s \bigg]^s_0  \\  \\  \longrightarrow \sf {v}^{2}  -  {u}^{2}  = 2a(s - 0) \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf \:  {v}^{2}  -  {u}^{2}  = 2as}}

\rule{300}{2}

\rule{300}{2}

Answered by aryanthakur34832
5

Step-by-step explanation:

helpful

plz brainliest

Attachments:
Similar questions