Math, asked by anshika231251, 2 months ago

integrate limit 2 to 0 1/4+x-x2​

Answers

Answered by vipinkumar212003
0

Step-by-step explanation:

 =  {\int_0}^{2}dx\: (\frac{1}{4}  + x -  {x}^{2} ) \\=   {\int_0}^{2} \frac{1}{4}dx +  {\int_0}^{2}x dx-{\int_0}^{2}  {x}^{2} dx  \\ = \frac{1}{4}  +  {[ \frac{ {x}^{2} }{2} ]_0}^{2} - {[  \frac{{x}^{3}}{3}  ]_0}^{2}  \\ = \frac{1}{4} +[ \frac{ {(2)}^{2} }{2} - \frac{ {(0)}^{2} }{2} ] - [ \frac{ {(2)}^{3} }{3} - \frac{ {(0)}^{3} }{3} ]  \\ = \frac{1}{4} + \frac{4}{2}  -  \frac{8}{3}  \\ = \frac{1}{4} + 2 -  \frac{8}{3} \\ = \frac{3+12-32}{12}  \\  =  \frac{ - 17}{12}

HOPE IT HELPS YOU

MARK ME BRAINLIEST

Similar questions