integrate log(1+tanx)
Answers
Answered by
1
Answer:
Step-by-step explanation:
Jitender Singh
IIT Delhi
askIITians Faculty
158 Points
Ans:
I = \int_{0}^{\pi /4}ln(1+tanx)dx
I = \int_{0}^{a}f(x)dx = \int_{0}^{a}f(a-x)dx
I = \int_{0}^{\pi /4}ln(1+tan(\frac{\pi }{4}-x))dx
I = \int_{0}^{\pi /4}ln(1+\frac{tan\frac{\pi }{4}-tanx}{1+tan\frac{\pi }{4}.tanx})dx
I = \int_{0}^{\pi /4}ln(1+\frac{1-tanx}{1+tanx})dx
I = \int_{0}^{\pi /4}ln(\frac{2}{1+tanx})dx
I = \int_{0}^{\pi /4}ln(2)dx-\int_{0}^{\pi /4}ln(1+tan(x))dx
I = \int_{0}^{\pi /4}ln(2)dx-I
2I = \int_{0}^{\pi /4}ln(2)dx
I = \frac{ln(2)}{2}(x)_{0}^{\pi /4}
I = \frac{\pi }{8}ln(2)
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty
Answered by
1
Step-by-step explanation:
Similar questions
English,
5 months ago
Math,
5 months ago
Math,
10 months ago
Math,
10 months ago
Business Studies,
1 year ago