Math, asked by rajeevkumar9244, 1 year ago

Integrate Log(1+x)/ 1+x2 dx

Upper Limit 1

Lower limit 0

Answers

Answered by abhi178
356

your question is -> \int\limits^1_0{\frac{log(1+x)}{(1+x^2)}}\,dx

you can easily solve this question with help of substitution method

put x = tanθ

differentiating both sides,

dx = sec²θ dθ

now limits : upper limits = 1 = tanθ ⇒θ = π/4 and lower limits = 0 = tanθ ⇒θ = 0°

now, \int\limits^1_0{\frac{log(1+x)}{(1+x^2)}}\,dx=\int\limits^{\pi/4}_0{\frac{log(1+tan\theta)}{(1+tan^2\theta)}}sec^2\theta d\theta

I = \int\limits^{\pi/4}_0{\frac{log(1+tan\theta)}{(sec^2\theta)}}sec^2\theta d\theta

I = \int\limits^{\pi/4}_0{log(1+tan\theta)}\,d\theta.....(1)

we know, \int\limits^a_0f(x)\,dx=\int\limits^a_0f(a-x)\,dx

so, I=\int\limits^{\pi/4}_0{log(1+tan\theta)}\,d\theta=\int\limits^{\pi/4}_0{log(1+tan(\pi/4-\theta))}\,d\theta

we know, tan(π/4- θ) = (1 - tanθ)/(1 + tanθ)

so, I = \int\limits^{\pi/4}_0{log\left(1+\frac{1-tan\theta}{1+tan\theta}\right)}\,d\theta

= \int\limits^{\pi/4}_0{log\frac{2}{1+tan\theta}}\,d\theta

= \int\limits^{\pi/4}_0{\left[log2-log(1+tan\theta)\right]}\,d\theta......(2)

adding equations (1) and (2),

we get, 2I = \int\limits^{\pi/4}_0log2

so, I = \frac{\pi}{8}log2

Similar questions