Math, asked by sankalpkatyal8769, 10 months ago

Integrate log (cosecx - cotx) / sinx dx

Answers

Answered by BrainlyTornado
3

ANSWER:

  • log(cosec x - cot  x) + C

GIVEN:

  • log(cosec x - cot x) / sin x dx

TO INTEGRATE:

  • log(cosec x - cot x) / sin x dx

EXPLANATION:

\displaystyle\int {\dfrac{log( cosec\ x- cot\ x)}{sin x}} \ dx

Take log(cosec x - cot  x) = t

Differentiate w.r.t  t

d/dx(log x) = 1/x

\dfrac{1}{ cosec\ x- cot\ x}\left(\dfrac{d}{dt} ( cosec\ x- cot\ x})\right)=1

d/dx(cosec x) = - cosec x cot x

d/dx(cot x) = - cosec² x

\dfrac{-cosec\ x\ cot\ x+cosec^2\ x}{ cosec\ x- cot\ x}\left(\dfrac{d}{dt} (x })\right)=1

\dfrac{cosec\ x( -cot\ x+cosec\ x)}{ cosec\ x- cot\ x}dx=dt

cosec x dx = dt

\displaystyle\int log( cosec\ x- cot\ x)cosec\ x \ dx

\displaystyle\int t \ dt

\displaystyle\int x^n = \dfrac{x^{n+1}}{n+1} + C

\displaystyle\int t^1 dt= \dfrac{t^{1+1}}{1+1} + C[Here C is the constant of integration]

\displaystyle\int t\ dt= \dfrac{t^{2}}{2} + C

Substitute t =  log(cosec x - cot  x)

\displaystyle\int {\dfrac{log( cosec\ x- cot\ x)}{sin x}} \ dx= \dfrac{log(cosec\ x - cot\  x) ^{2}}{2} + C

log xᵃ = a log x

2\dfrac{log(cosec\ x - cot\  x) }{2} + C

log(cosec\ x - cot\  x)  + C        

∫log(cosec x - cot x) / sin x dx = log(cosec x - cot  x) + C

Similar questions