Integrate : ∫log(sinx)cosxdx
Answers
Answered by
4
Now, ∫ log(sinx) cosx dx
Let, sinx = z
Then, cosx dx = dz
So, ∫ log(sinx) cosx dx
= ∫ logz dz
= logz ∫dz - ∫ {d/dz (z) × ∫dz}dz
= z logz - ∫ z dz
= z logz - z²/2 + c, where c is integral constant
= sinx log(sinx) - (sin²x)/2 + c
Formula :
∫ uv dx
= u ∫ v dx - ∫ (du/dx × ∫ v dx) dx
#
Similar questions