Math, asked by devapriyapramod2928, 1 year ago

Integrate : ∫log(sinx)cosxdx

Answers

Answered by MarkAsBrainliest
4
\textbf{Answer :}

Now, ∫ log(sinx) cosx dx

Let, sinx = z

Then, cosx dx = dz

So, ∫ log(sinx) cosx dx

= ∫ logz dz

= logz ∫dz - ∫ {d/dz (z) × ∫dz}dz

= z logz - ∫ z dz

= z logz - z²/2 + c, where c is integral constant

= sinx log(sinx) - (sin²x)/2 + c

Formula :

∫ uv dx

= u ∫ v dx - ∫ (du/dx × ∫ v dx) dx

#\textbf{MarkAsBrainliest}
Similar questions