Math, asked by IamArvind, 10 months ago

Integrate log (tanx) dx​

Answers

Answered by Cubingwitsk
3

Answer:

Step-by-step explanation:

∫ ln(tanx)dx , Assume log without any base to be equal to log base e

This Question is solved by definate Integrals, Because Indefinate is very complicated.

Consider, A =   \int\limits^{\frac{\pi}{2}}_0 {ln(tan x)} \, dx

A  =        \int\limits^{\frac{\pi}{4}}_0 {ln(tan x)} \, dx   +   \int\limits^{\frac{\pi}{2}}_{\frac{\pi}{4}} {ln(tan x)} \, dx

In the second integral, substitute, Substituing x = π/2 -T

=> dx =  -dT and we get new form of A as,

A = \int\limits^{\frac{\pi}{4}}_0 {ln(tan x)} \, dx    -    \int\limits^0_{\frac{\pi}{4}} {ln(tan {\frac{\pi}{2} - T})} \, dT

A = \int\limits^{\frac{\pi}{4}}_0 {ln(tan x)} \, dx    +   \int\limits^0_{\frac{\pi}{4}} {ln(cot T)} \, dT

A =  \int\limits^{\frac{\pi}{4}}_0 {ln(tan x)} \, dx   -   \int\limits^{\frac{\pi}{4}}_0 {ln(tan T)} \, dT

We know that,  changing the name of the variable in definite integral doesn’t affect it’s evaluation result.

Hence above step is same as,

A = \int\limits^{\frac{\pi}{4}}_0 {ln(tan x)} \, dx  - \int\limits^{\frac{\pi}{4}}_0 {ln(tan x)} \, dx

A = 0

=> A =   \int\limits^{\frac{\pi}{2}}_0 {ln(tan x)} \, dx = 0

Thanks.

Hope this helps.

Similar questions
Math, 10 months ago