Math, asked by Preetijha7268, 1 year ago

Integrate of ex sec x(1+tanx) dx

Answers

Answered by MaheswariS
9

\int\,e^x\,sec\,x(1+tan\,x)\,dx

=\int\,e^x(sec\,x+sec\,x\,tan\,x)\,dx

\boxed{\begin{minipage}{4cm}\text{Take }$f(x)=sec\,x\\\\$\text{Then, }$f'(x)=sec\,x\,tan\,x$\end{minipage}}

=\int\,e^x[(f(x)+f'(x)]\,dx

\text{Using the following result }

\boxed{\bf\,\int\,e^x[(f(x)+f'(x)]\,dx=e^x\,f(x)+c}

=\,e^x\,f(x)+c

=\,e^x\,secx+c

\therefore\bf\int\,e^x\,sec\,x(1+tan\,x)\,dx=\,e^x\,secx+c

Answered by ravindras931
0

Step-by-step explanation:

hope it will help u dude

Attachments:
Similar questions