integrate sec²x/√(tan²x+4) using substitution method
Answers
Answered by
4
Answer:
log | tanx + √(tan²x + 4) | + C₁
Step-by-step explanation:
Let tanx = t.
differentiate on both sides w.r.t to x.
dt/dx = sec²x.
dx = dt/sec²x.
Now integrating the function w.r.t x.
∫Sec²x / √(tan²x + 4 )
Put value of tanx = t and dx = dt/sec²x.
=∫Sec²x / √(t² + 4 ) * dt/sec²x.
= ∫dt/√(t² + 4 )
= ∫dt/√[(t)² + (2)²]
But It is of form ∫dx/√x² + a² = log| x + √ x² + a² | + C₁
= log | t + √[(t)² + (2)² | + C₁
= log | t + √(t² + 4) | + C₁
= log | tanx + √(tan²x + 4) | + C₁
Similar questions