integrate sin^-1[2x/1+x^2]
Answers
Answered by
1
I=∫arcsin(2x1+x2)dx.I=∫arcsin(2x1+x2)dx.
Let x=tanθ⇒dx=sec2θdθ.x=tanθ⇒dx=sec2θdθ.
⇒2x1+x2=2tanθ1+tan2θ=2tanθsec2θ⇒2x1+x2=2tanθ1+tan2θ=2tanθsec2θ
=2sinθcosθ=sin2θ.=2sinθcosθ=sin2θ.
⇒arcsin(2x1+x2)=arcsin(sin2θ)=2θ.⇒arcsin(2x1+x2)=arcsin(sin2θ)=2θ.
⇒I=∫arcsin(2x1+x2)dx=∫2θsec2θdθ⇒I=∫arcsin(2x1+x2)dx=∫2θsec2θdθ
=2θtanθ−∫2tanθdθ=2θtanθ−2logsecθ+C=2θtanθ−∫2tanθdθ=2θtanθ−2logsecθ+C
=2θtanθ−logsec2θ+C=2θtanθ−log(1+tan2θ)+C=2θtanθ−logsec2θ+C=2θtanθ−log(1+tan2θ)+C
=2xarctanx−log(1+x2)+C.
Answered by
0
int(sin^-1x)^2dx=x(sin^-1x)^ 2+2sqrt(1-x^2)sin^-1x-2x+C We have: I=int( sin^-1x)^2dx Integration by parts takes the f
Similar questions