Math, asked by orishmaparida2311, 1 year ago

integrate sin-1(cosx)​

Answers

Answered by kaushik05
5

Answer:

 \int { \sin}^{ - 1} ( \cos(x) ) dx\\  =  >  \:  \int { \sin }^{ - 1} ( \sin( \frac{\pi}{2} - x ) )dx \\  =  >  \int( \frac{\pi}{2}  - x) \: dx \\  =  >  \frac{\pi}{2} x -  \frac{ {x}^{2} }{ 2}  + c

In this question change

cosx=sin(π/2-x)

formula :

sin^-1(sinx)= x

Answered by Anonymous
5

Answer:

\bold\red{\frac{\pi \: }{2} x -  \frac{ {x}^{2} }{2}  + c}

Step-by-step explanation:

We have to integrate,

\int {sin}^{ - 1} (cosx)dx

But, we know that,

 \cos(x)  =  \sin( \frac{ \pi }{2}  - x) dx

So, after replacement,

we get,

 = \int {sin}^{ - 1} (sin( \frac{\pi}{2}  - x))dx

But,

we know that,

 {sin}^{ - 1} (sinx) = x \:  \:  \: \ \\  \\  where \:  \:   -  \frac{\pi}{2}   \leqslant x \leqslant   + \frac{\pi}{2}

Therefore,

we get,

\int( \frac{\pi}{2}  - x)dx \\  \\  =  >  \bold{\frac{\pi \: }{2} x -  \frac{ {x}^{2} }{2}  + c}

where,

c is an arbitrary constant.

Similar questions