Math, asked by omprakashilnak, 5 months ago

integrate sin^2 into log x by X​

Answers

Answered by Anonymous
6

Solution:-

  :    \implies\rm \int  \dfrac{ \sin^{2}  log  x }{x}  \: dx \\

:- Using substitution method

 \rm \: let

 \rm\to \: logx = t

:- differentiate on both side

 \rm \to  \dfrac{1}{x}  dx= dt

Now take

 :    \implies\rm \int  \dfrac{ \sin^{2}  log  x }{x}  \: dx \\

 \rm : \implies \int  { \sin {}^{2} t} \:  dt \\

Now we can write

 \rm \to1 - 2 \sin {}^{2} t =  \cos2t

 \rm \to \: 1 -  \cos2t = 2 \sin {}^{2} t

 \rm \to \sin {}^{2} t =  \dfrac{1 -  \cos2t}{2}

Now substitute the value of sin²t

 \rm :  \implies \int \dfrac{1 -  \cos2t }{2} dt \\

Take 1/2 out side the integration because it is constant term

 \rm  : \implies  \dfrac{1}{2} \int1 -  \cos2t \: dt \\

By integration we get

 \rm :  \implies \:  \dfrac{1}{2}  \bigg(t -  \dfrac{1}{2}  \sin2t \bigg) + c

 \rm :  \implies \dfrac{1}{2} t -  \dfrac{1}{4}  \sin2t + c

Now put the value of t

 \rm  : \implies \dfrac{1}{2}  logx -  \dfrac{1}{4}  \sin2 logx + c

Answer

\rm  : \implies \dfrac{1}{2}  logx -  \dfrac{1}{4}  \sin2 logx + c

Similar questions