Physics, asked by alkatripathi302, 1 year ago

Integrate sin (2pix+30 degree) dx

Answers

Answered by abhi178
11

we have to integrate \int{sin(2\pi x+30^{\circ})}\,dx

first of all, we have to resolve sin(2πx + 30°)

we know, sin(A + B) = sinA.cosB + cosA.sinB

so, sin(2πx + 30°) = sin(2πx).cos30° + sin30°.cos(2πx)

= sin(2πx). (√3/2) + (1/2). cos(2πx)

now, \int{sin(2\pi x+30^{\circ})}\,dx=\frac{\sqrt{3}}{2}\int{sin(2\pi x)}\,dx+\frac{1}{2}\int{cos(2\pi x)}\,dx

=\frac{\sqrt{3}}{2}\left[\frac{-cos(2\pi x)}{2\pi}\right]+\frac{1}{2}\left[\frac{sin(2\pi x)}{2\pi}\right]

=-\frac{\sqrt{3}}{4\pi}cos(2\pi x)+\frac{1}{4\pi}sin(2\pi x)

=\frac{1}{2\pi}\left(-\frac{\sqrt{3}}{2}cos(2\pi x)+\frac{1}{2}sin(2\pi x)\right)

=\frac{1}{2\pi}\left(cos(150^{\circ}).cos(2\pi x)+sin(150^{\circ}).sin(2\pi x)\right)

=\frac{1}{2\pi}cos(2\pi x - 150^{\circ})

[ we know, cosA.cosB + sinA.sinB = cos(A - B) ]

hence, answer is=\frac{1}{2\pi}cos(2\pi x - 150^{\circ})


abhishekabhi89: thanks sr
abhishekabhi89: pr mujha samaj m nhi aaya
Answered by krishnatalukdar1
5

Explanation:

answer is -1/2π cos(2πx + 30°) + C

Similar questions