Math, asked by duragpalsingh, 3 months ago

integrate (sin^3x + cos^3x) dx​

Answers

Answered by Salmonpanna2022
2

Answer:

There is your solution..

 {}^{please \: mark \: me \: brainlist \:  \ans.}

Attachments:
Answered by amansharma264
17

EXPLANATION.

⇒ ∫(sin³x + cos³x) dx.

As we know that,

We can write equation as,

⇒ I = ∫(sin³x)dx + ∫(cos³x)dx.

⇒ I = I₁ + I₂.

⇒ I₁ = ∫(sin³x)dx.

⇒ I₁ = ∫(sin²x)(sin x)dx.

As we know that,

⇒ sin²x + cos²x = 1.

⇒ sin²x = 1 - cos²x.

Put the value of sin²x in equation, we get.

⇒ ∫(sin x)[1 - cos²x]dx.

⇒ ∫(sin x) - (sin x cos²x)dx.

⇒ ∫(sin x)dx - ∫(sin x cos²x)dx.

⇒ ∫(sin x)dx. = -cos x + c.

⇒ ∫sin x cos²x dx.

By using the substitution method, we get.

Let we assume that,

⇒ cos x = t.

Differentiate w.r.t x, we get.

⇒ -sin x dx = dt.

Put the value in equation, we get.

⇒ -∫t²dt.

As we know that,

⇒ ∫xⁿdx = xⁿ⁺¹/n + 1 + c.

Using this formula in equation, we get.

⇒ -[t³/3] + c.

Put the value of t = cos x in equation, we get.

⇒ -[cos³x/3] + c.

⇒ I₁ = ∫(sin³x)dx = -cos x + cos³x/3 + c.

⇒ I₁ = ∫(sin³x)dx = cos³x/3 - cos(x) + c.

⇒ I₂ = ∫cos³xdx.

As we know that,

Formula of :

⇒ cos3x = 4cos³x - 3cosx.

⇒ cos3x + 3cosx = 4cos³x.

⇒ cos3x + 3cosx/4 = cos³x.

⇒ ∫cos3x + 3cosx/4 dx.

⇒ 1/4∫cos3x + 3cosx dx.

⇒ 1/4∫cos3x dx + ∫3cosx dx.

⇒ 1/4[sin3x/3] + 3[sin x] + c.

⇒ 1/4[sin3x/3] + 3sinx + c.

⇒ I = I₁ + I₂.

⇒ I = cos³x/3 - cos(x) + 1/4[sin3x/3 + 3sinx ]+ C.

⇒ I = cos³x/3 - cos(x) + sin3x/12 + 3sinx/4 + c.

                                                                                                                                       

MORE INFORMATION.

Basic theorem on integration.

If f(x), g(x) are two functions of a variable x and k is a constant, then

(1) = ∫K f(x)dx = K ∫f(x)dx + c.

(2) = ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx.

(3) = d[∫f(x)dx]/dx = f(x).

(4) = ∫[d f(x)/dx]dx = f(x).

Similar questions