Math, asked by podilapusowjanya653, 23 days ago

integrate (sin^4x) / (cos^6x) dx xnot equal to (2n+1)π/2,nbelongs toz​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {sin}^{4} x}{ {cos}^{6}x} \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{ {sin}^{4} x}{ {cos}^{4}x \times  {cos}^{2} x} \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{ {sin}^{4} x}{ {cos}^{4}x} \times  \frac{1}{ {cos}^{2}x}  \: dx

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  \frac{sinx}{cosx} = tanx}}} \:  \\  \\  \purple{\rm :\longmapsto\:\boxed{\tt{  \frac{1}{cosx} = secx}}}

So, on substituting these Identities, we get

\rm \:  =  \: \displaystyle\int\rm  {tan}^{4}x \:  {sec}^{2}x \: dx

Now,

To evaluate this integral, we use Method of Substitution

So, Substitute

 \purple{\rm :\longmapsto\:tanx = y} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \purple{\rm :\longmapsto\: {sec}^{2} x \: dx \:  =  \: dy} \\

So, on substituting these values, we get

\rm \:  =  \: \displaystyle\int\rm  {y}^{4}  \: dy

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int\rm  {x}^{n} \:  =  \:  \frac{ {x}^{n + 1} }{n + 1} + c \: }}} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{ {y}^{4 + 1} }{4 + 1}  + c

\rm \:  =  \: \dfrac{ {y}^{5} }{5}  + c

\rm \:  =  \: \dfrac{ {tan}^{5} x}{5}  + c

Hence,

 \purple{\rm\implies \:\:\boxed{\tt{ \displaystyle\int\bf  \frac{ {sin}^{4} x}{ {cos}^{6}x} \: dx \:  =  \:  \frac{ {tan}^{5} x}{5} + c \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by OoAryanKingoO78
2

Answer:

\large\underline{\bf\red{Question-}}

integrate (sin^4x) / (cos^6x) dx xnot equal to (2n+1)π/2,nbelongs toz

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

\large\underline{\bf\red{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {sin}^{4} x}{ {cos}^{6}x} \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{ {sin}^{4} x}{ {cos}^{4}x \times  {cos}^{2} x} \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{ {sin}^{4} x}{ {cos}^{4}x} \times  \frac{1}{ {cos}^{2}x}  \: dx

We know,

 \green{\rm :\longmapsto\:\boxed{\tt{  \frac{sinx}{cosx} = tanx}}} \:  \\  \\  \purple{\rm :\longmapsto\:\boxed{\tt{  \frac{1}{cosx} = secx}}}

So, on substituting these Identities, we get

\rm \:  =  \: \displaystyle\int\rm  {tan}^{4}x \:  {sec}^{2}x \: dx

Now,

To evaluate this integral, we use Method of Substitution

So, Substitute

 \green{\rm :\longmapsto\:tanx = y} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \purple{\rm :\longmapsto\: {sec}^{2} x \: dx \:  =  \: dy} \\

So, on substituting these values, we get

\rm \:  =  \: \displaystyle\int\rm  {y}^{4}  \: dy

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int\rm  {x}^{n} \:  =  \:  \frac{ {x}^{n + 1} }{n + 1} + c \: }}} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{ {y}^{4 + 1} }{4 + 1}  + c

\rm \:  =  \: \dfrac{ {y}^{5} }{5}  + c

\rm \:  =  \: \dfrac{ {tan}^{5} x}{5}  + c

Hence,

 \green{\rm\implies \:\:\boxed{\tt{ \displaystyle\int\bf  \frac{ {sin}^{4} x}{ {cos}^{6}x} \: dx \:  =  \:  \frac{ {tan}^{5} x}{5} + c \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions