Math, asked by dev75089, 3 months ago

integrate sin+cosx/sin^2x+cos^4x​

Answers

Answered by mathdude500
4

Given Question :-

Evaluate :-

\displaystyle\int \tt \: \dfrac{sinx + cosx}{ {sin}^{2}x +  {cos}^{4}x} \: dx

Cᴀʟᴄᴜʟᴀᴛɪᴏɴ :

We know that,

\boxed{\bf \:  {sin}^{2}x = 1 -  {cos}^{2}x }

\boxed{\bf \:  {cos}^{2}x = 1  -  {sin}^{2}x }

\boxed{\bf \: \displaystyle\int \tt \: \dfrac{dx}{ {a}^{2}-{x}^{2}}  = \dfrac{1}{2a}log |\dfrac{a + x}{a - x}|  + c}

\boxed{\bf \: \displaystyle\int \tt \: \dfrac{dx}{ {x}^{2} + {a}^{2}} = \dfrac{1}{a} {tan}^{ - 1}\dfrac{x}{a} + c}

Let's solve the problem now!!

Let we first represent the denominator in terms of sinx - cosx, so that derivative of this exist in numerator.

Thus,

Consider,

\rm :\longmapsto\: {sin}^{2}x +  {cos}^{4}x

\rm  = \:\: 1 - {cos}^{2}x +  {( {cos}^{2}x) }^{2}

\rm  = \:\:1 -  {cos}^{2}x(1 -  {cos}^{2}x)

\rm  = \:\:1 -  {cos}^{2}x {sin}^{2}x

\rm :\implies\: {sin}^{2}x +  {cos}^{4}x = 1 -  {cos}^{2}x {sin}^{2}x -  -  - (1)

Consider,

\rm :\longmapsto\: {(sinx - cosx)}^{2}

\rm \:  {(sinx - cosx)}^{2} = \:\: {sin}^{2}x +  {cos}^{2}x - 2sinxcosx

\rm \:  {(sinx - cosx)}^{2} = \:\: 1 - 2sinxcosx

\rm :\longmapsto\:2sinxcosx = 1 -  {(sinx - cosx)}^{2}

\rm :\implies\:sinxcosx = \dfrac{1 -  {(sinx - cosx)}^{2} }{2}  -  - (2)

Substituting this value in equation (1), we get

 \rm \:{sin}^{2}x+{cos}^{4}x = 1 -  {\bigg(\dfrac{1 -  {(sinx - cosx)}^{2} }{2}  \bigg) }^{2}

Now,

Given Integral,

\rm :\longmapsto\:Let \:  I =  \: \displaystyle\int \tt \: \dfrac{sinx + cosx}{ {sin}^{2}x +  {cos}^{4}x} \: dx

can be rewritten as

\rm \: I= \:\:\displaystyle\int \tt \: \dfrac{sinx + cosx}{1 -  {\bigg(\dfrac{1 -  {(sinx - cosx)}^{2} }{2}  \bigg) }^{2}} \: dx

As we know that,

By using substitution method, we have

  • ⇒ Put sinx - cosx = y

Differentiate w.r.t x, we get.

  • ⇒ ( cosx + sinx ) dx = dy

So,

 \rm \:I\:=\:\displaystyle\int \tt \: \dfrac{dy}{1 -  {\bigg(\dfrac{1 -  {y}^{2} }{2}  \bigg) }^{2} }

 \rm \:I\:=\:\displaystyle\int \tt \: \dfrac{4dy}{4 -  {(1 -  {y}^{2})}^{2} }

 \rm \:I\:=\:\displaystyle\int \tt \: \dfrac{4dy}{ {2}^{2}  -  {(1 -  {y}^{2})}^{2} }

 \rm \:I\:=\:\displaystyle\int \tt \: \dfrac{4dy}{(2 + 1 -  {y}^{2})(2 - 1 +  {y}^{2})}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{\boxed{ \bf \because \:  {x}^{2} -  {y}^{2}  = (x + y)(x - y)}}

 \rm \:I\:=\:\displaystyle\int \tt \: \dfrac{4dy}{(3 -  {y}^{2})(1+  {y}^{2})}

 \rm \:I\:=\:\displaystyle\int \tt \: \dfrac{(3 + 1)dy}{(3 -  {y}^{2})(1+  {y}^{2})}

 \rm \:I\:=\:\displaystyle\int \tt \: \dfrac{(3 + 1 +  {y}^{2}  -  {y}^{2} )dy}{(3 -  {y}^{2})(1+  {y}^{2})}

 \rm \:I\:=\:\displaystyle\int \tt \: \dfrac{(1 +{y}^{2})  + (3 -{y}^{2})dy}{(3 -  {y}^{2})(1+  {y}^{2})}

 \rm \:I\:=\:\displaystyle\int \tt \: \dfrac{(1 +{y}^{2})dy}{(3 -  {y}^{2})(1+  {y}^{2})} + \displaystyle\int \tt \: \dfrac{(3 - {y}^{2})dy}{(3 -  {y}^{2})(1+  {y}^{2})}

 \rm \:I\:=\:\displaystyle\int \tt \: \dfrac{dy}{ {( \sqrt{3}) }^{2}  -  {y}^{2}} + \displaystyle\int \tt \: \dfrac{dy}{{y}^{2} +  {1}^{2} }

 \rm \:I\:  =  \: \dfrac{1}{2 \sqrt{3} }log |\dfrac{ \sqrt{3}  + y}{ \sqrt{3}  - y} |   +  {tan}^{ - 1}y + c

 \rm \:I= \dfrac{1}{2 \sqrt{3} }log\bigg|\dfrac{\sqrt{3}+(sinx-cosx)}{ \sqrt{3}  - (sinx - cosx)} \bigg|+{tan}^{-1}(sinx-cosx)+c

 \rm \:I=\dfrac{1}{2 \sqrt{3} }log\bigg|\dfrac{\sqrt{3}+sinx-cosx}{ \sqrt{3}  - sinx + cosx} \bigg|+{tan}^{-1}(sinx-cosx)+c

Additional Information :-

\boxed{\bf \: \displaystyle\int \tt \: \dfrac{dx}{ {x}^{2}- {a}^{2}}  = \dfrac{1}{2a}log |\dfrac{x - a}{x + a} |  + c}

\boxed{\bf \: \displaystyle\int \tt \: \dfrac{dx}{ \sqrt{{a}^{2} - {x}^{2}}}=  {sin}^{ - 1} \dfrac{x}{a} + c}

\boxed{\bf \: \displaystyle\int \tt \: \dfrac{dx}{ \sqrt{{x}^{2} - {a}^{2}}} =log |x +  \sqrt{{x}^{2}  -  {a}^{2}} |   + c}

\boxed{\bf \: \displaystyle\int \tt \: \dfrac{dx}{ \sqrt{{x}^{2} + {a}^{2}}} =log |x +  \sqrt{{x}^{2} + {a}^{2}} |   + c}

Similar questions