Integrate: sin inverse root x - cos inverse root x divided by sin inverse root x + cos inverse root x dx
Answers
Answered by
2
Let I=∫(sin-¹√x-cos-¹√x/sin-¹√x+cos-¹√x)dx
=Sin-¹√x+cos-¹√x=π/2
=sin-¹√x=x/2-cos-¹√x
i= [∫Sin-¹√x=-x/2-cos-¹√x)/π/2]dx...1
=2π∫(2sin-¹√x-π/2)dx
=4/π∫sin-¹√xdx-∫dx
i=4/π∫sin-¹√xdx-x+c₁
i₁=∫sin-¹√xdx
=x=sin²Q
=dx=2sinQcosdQ
=i₁=∫sin-¹(√sinQ).2sinQcosQdQ
=∫sin-¹(sinQ).2sinQcos dQ
=i₁∫Q.sin2QdQ
taking Qas the first and sin2Q in second
i₁=Q∫sin2QdQ=∫d/dQ(Q).∫sin2QdQ)dQ+c₂
Q(-cos2Q/2)+∫1.(-cos2Q)/2dQ+c
=-Q(2sinQ-1)/2sinQcosQ/2+C₂
from 2 we get
I=4/π(2x-1)/2sin-¹√x+√x-x²/2+c₂)-x+4
i=2/π(2x-1)sin-¹√x+2/π√x-x²+4/πC₂-x+C₁
i=2/π(2x-1)sin-¹√x+2/π√x-x²-x+C
where,
= c=c₁+4/πc₂
Similar questions
Computer Science,
7 months ago
Science,
7 months ago
English,
1 year ago
Social Sciences,
1 year ago