Math, asked by kishorshyam1972, 10 months ago

integrate sin ( x)³. please answer the question ​

Answers

Answered by arhaanjha
0

Answer:

∫sin(x3)dx≈x44−x1060+x141920

Step-by-step explanation:

Start with the known formula for sinx and then replace x by x3

sinx=∑∞n=0(−1)nx2n+1(2n+1)!

sin(x3)=∑∞n=0(−1)n(x3)2n+1(2n+1)!

The integral becomes ∫∑∞n=0(−1)nx6n+3(2n+1)!dx=∑∞n=0(−1)nx6n+4(2n+1)!×(6n+4)+C

For small values of x, the first few terms can be taken to give reasonable accuracy in case you want to evaluate a definite integral. The more terms you take the more accurate the answer is.

∫sin(x3)dx≈x44−x1060+x141920

Hope this helps.

Please mark as brainliest.

Answered by bendingfigure
41

{} \bf{ \huge{ \boxed{ \underline{ \mathfrak{ \blue{Answer:-}}}}}}

\color{Red}{Step 1:-} \displaystyle \int {sin}^{3} x \: dx

\color{Red}{Step 2:-}\\ Use \: Pythagorean \: Identities: \\ sin ^{2} x =( 1 - cos ^{2} )sin \: x \: dx \\  \displaystyle \int(1 -  {cos}^{2} x)sin \: x \: dx.

\color{Red}{Step 3:-}\\Use \: Integration \: by \: Substitution .\\ Let \: u = cos \: x \: du =  - sin \:x  \: dx.

\color{Red}{Step 4:-}\\Using \: u \: and \: du, \: above, \: rewrite \\  \displaystyle \int(1 -  {cos}^{2} x)sin \: x \: d x.\\  \displaystyle \int - (1 -  {u}^{2} )du

\color{Red}{Step 5:-}Use \: Power \: Rule \:  \displaystyle \int \:  {x}^{n \:} dx =    \frac{ {x}^{n + 1} }{n + 1}   + C \\   \frac{ {u}^{3} }{3 }  - u

\color{Red}{Step 6:-}Substitute \: u = cos \: x \: back \: into \: the \: original \: integral .\\  \frac{cos ^{3} x}{3}  - cos \: x

\color{Red}{Step 7:-} \\Add \: constant \\  \frac{cos \: x ^{3} }{3}  - cos \: x + C

Similar questions