Integrate √(sin(x-a)/sin(x-b)) wrt x.
Answers
Answered by
4
This problem is tough and the answer comes in a complex form.
Integrate √ [(sin (x-a) / Sin(x-b) ] dx
Let c = b-a, x-b = y, x-a = y+c
Let t² = sin(x-a) / Sin(x-b) = sin (y+c) / sin y --- (1)
2t dt = - sin c /sin² y dy --- (2)
Expand (1) and square both sides to get:
sin²y = sin²c /(t⁴ -2cos c t²+1) = sin² c/(t⁴ -2t²+1
f(x) dx
= -2 sin c * t² dt/[t⁴ + 2t² +1 - 4 t² cos² c/2]
= - 2 sin c * t² dt / [(t²+1+ 2t cos c/2) (t² + 1 - 2t cos c/2) ]
= -2 sin c * 1/(4 cos c/2)*[ t dt/ (t² - 2t cos c/t +1) - t dt/(t² +2t cos c/2 +1) ]
= - sin c/2 * [ t dt /[ (t - cos c/2)² + sin² c/2] - t dt/ [ (t+cos c/2)² + sin² c/2 ] ]
= - sin c/2 * z dz / (1+ z²) - cos c/2 dz /(1+z²)
+ sin c/2 * s ds /(1+s²) - cos c/2 * ds /(1+s²)
where z = (t - cos c/2) / sin c/2 , dt = dz sin c/2
s = (t + cos c/2) / sin c/2 , dt = ds sin c/2
When we integrate we get:
ans = - 1/2 *sin c/2 * Ln [(t² +2 t cos c/2 +1) / (t² - 2t cos c/2 +1) ]
- cos c/2 * Tan⁻¹ [ 2 t sin c/2 / (1 -t²) ] + K
Substitute for t , c, and t² to get the integral as a function of x.
Integrate √ [(sin (x-a) / Sin(x-b) ] dx
Let c = b-a, x-b = y, x-a = y+c
Let t² = sin(x-a) / Sin(x-b) = sin (y+c) / sin y --- (1)
2t dt = - sin c /sin² y dy --- (2)
Expand (1) and square both sides to get:
sin²y = sin²c /(t⁴ -2cos c t²+1) = sin² c/(t⁴ -2t²+1
f(x) dx
= -2 sin c * t² dt/[t⁴ + 2t² +1 - 4 t² cos² c/2]
= - 2 sin c * t² dt / [(t²+1+ 2t cos c/2) (t² + 1 - 2t cos c/2) ]
= -2 sin c * 1/(4 cos c/2)*[ t dt/ (t² - 2t cos c/t +1) - t dt/(t² +2t cos c/2 +1) ]
= - sin c/2 * [ t dt /[ (t - cos c/2)² + sin² c/2] - t dt/ [ (t+cos c/2)² + sin² c/2 ] ]
= - sin c/2 * z dz / (1+ z²) - cos c/2 dz /(1+z²)
+ sin c/2 * s ds /(1+s²) - cos c/2 * ds /(1+s²)
where z = (t - cos c/2) / sin c/2 , dt = dz sin c/2
s = (t + cos c/2) / sin c/2 , dt = ds sin c/2
When we integrate we get:
ans = - 1/2 *sin c/2 * Ln [(t² +2 t cos c/2 +1) / (t² - 2t cos c/2 +1) ]
- cos c/2 * Tan⁻¹ [ 2 t sin c/2 / (1 -t²) ] + K
Substitute for t , c, and t² to get the integral as a function of x.
kvnmurty:
click on red hearts thanks button above pls
Answered by
1
Answer:
sinb-a ln sinx-b+x-bcosb-a+C
Step-by-step explanation:
Let I=∫sin(x−a)sin(x−b)dx
Putting x−b=t
⇒ x=b+t & dx=dt
∴ I= ∫sin(b+t−a)sintdt
=∫sin{(b−a)+t}sintdt
= ∫sin(b−a)cos tsint+∫cos(b−a) sin tsin tdt
= ∫sin(b−a)cot t dt+∫cos(b−a)dt
= sin(b−a) ln |sin t|+t cos(b−a)+C
= sin(b−a) ln |sin(x−b)|+(x−b)cos(b−a)+C [∵t=x−b]
Let I=∫sinx-asinx-bdx
Putting x-b=t
⇒ x=b+t& dx=dt
∴ I= ∫sinb+t-asintdt
=∫sinb-a+tsintdt
= ∫sinb-acos tsint+∫cosb-a sin tsin tdt
= ∫sinb-acot t dt+∫cosb-adt
= sinb-a ln sin t+t cosb-a+C
= sinb-a ln sinx-b+x-bcosb-a+C
∵t=x-b
Similar questions
Social Sciences,
7 months ago
Math,
7 months ago
Physics,
1 year ago
Social Sciences,
1 year ago
Science,
1 year ago