Math, asked by templar9, 11 hours ago

integrate (sin x)/(cos^2 x * sqrt(cos 2x)) dx​

Answers

Answered by senboni123456
6

Answer:

Step-by-step explanation:

We have,

\tt{\displaystyle\int\dfrac{sin(x)}{cos^2(x)\cdot\sqrt{cos(2x)}}\,dx}

\tt{\displaystyle=\int\dfrac{sin(x)}{cos^2(x)\cdot\sqrt{cos^2(x)-sin^2(x)}}\,dx}

\tt{\displaystyle=\int\dfrac{sin(x)}{cos^2(x)\cdot\,cos(x)\cdot\sqrt{1-\dfrac{sin^2(x)}{cos^2(x)}}}\,dx}

\tt{\displaystyle=\int\dfrac{sin(x)\cdot\,sec^2(x)}{cos(x)\cdot\sqrt{1-\dfrac{sin^2(x)}{cos^2(x)}}}\,dx}

\tt{\displaystyle=\int\dfrac{tan(x)\cdot\,sec^2(x)}{\sqrt{1-tan^2(x)}}\,dx}

\bf{Put\,\,\,1-tan^2(x)=t}

\bf{\implies\,-2\,tan(x)\,sex^2(x)\,dx=dt}

\bf{\implies\,tan(x)\,sex^2(x)\,dx=\dfrac{dt}{-2}}

So,

\tt{\displaystyle=\int\dfrac{dt}{(-2)\sqrt{t}}}

\tt{\displaystyle=-\dfrac{1}{2}\int\dfrac{dt}{\sqrt{t}}}

\tt{\displaystyle=-\dfrac{1}{2}\cdot2\sqrt{t}+C}

\tt{\displaystyle=-\sqrt{1-tan^2(x)}+C}

Similar questions