Math, asked by mandal4199, 4 months ago

integrate sin x + cos x by 9 + 16 sin 2x DX​

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

\displaystyle\int\dfrac{\sin(x)+\cos(x)}{9+16\,\sin(2x)}\,dx

\displaystyle=\int\dfrac{\sin(x)+\cos(x)}{25-16+16\,\sin(2x)}\,dx

\displaystyle=\int\dfrac{\sin(x)+\cos(x)}{25-16\left\{1-\sin(2x)\right\}}\,dx

\displaystyle=\int\dfrac{\sin(x)+\cos(x)}{25-16\left\{\sin^{2}(x)+\cos^{2}(x)-2\sin(x)\cos(x)\right\}}\,dx

\displaystyle=\int\dfrac{\sin(x)+\cos(x)}{25-16\big\{\sin(x)-\cos(x)\big\}^{2}}\,dx

\bf{Put\,\,\,sin(x)-cos(x)=t}

\bf{\mapsto\,\,\big(cos(x)+sin(x)\big)dx=dt}

So,

\displaystyle=\int\dfrac{dt}{25-16\,{t}^{2}}

\displaystyle=\int\dfrac{dt}{\left(5\right)^{2}-\left(4t\right)^{2}}

We know,

\boxed{\displaystyle\bf{\int\dfrac{dx}{\left(a\right)^{2}-\left(b\,x\right)^{2}}=\dfrac{1}{b}\cdot\dfrac{1}{2a}\ln\left|\dfrac{a+b\,x}{a-b\,x}\right|+C}}

So,

\displaystyle=\dfrac{1}{4}\cdot\dfrac{1}{2\cdot5}\cdot\ln\left|\dfrac{5+4t}{5-4t}\right|+C

\displaystyle=\dfrac{1}{40}\cdot\ln\left|\dfrac{5+4t}{5-4t}\right|+C

\displaystyle=\dfrac{1}{40}\cdot\ln\left|\dfrac{5+4\big\{\sin(x)-\cos(x)\big\}}{5-4\big\{\sin(x)-\cos(x)\big\}}\right|+C

\displaystyle=\dfrac{1}{40}\cdot\ln\left|\dfrac{5+4\sin(x)-4\cos(x)}{5-4\sin(x)+4\cos(x)}\right|+C

Similar questions