Integrate sin2x/(a+bcosx)^2
Answers
Answered by
0
I=-1/2cot(x/2)-1/2cot(x/2)3]
Answered by
0
Step-by-step explanation:
integration of sin2x/(a+bcosx) ^2
we know sin2x=2sinxcosx
so, integration of 2sinxcosx/(a+bcosx)^2dx
a+bcosx=y
-bsinx(1)=dy/dx
-bsinxdx=du
dx=-dy/bsinx
integration of 2sinxcosx/y^2×(-dy/bsinx)
integration of 2sinxcosx(-dy)/y^2bsinx eqn no. 1
-2/b integration of cosx(dy) /y^2
let a+b cosx =y
cosx= y- a/b
put in eqn no. 1
-2/b integration of 1/y^2(y-a/b) dy
-2/b^2 integration of (y/y^2-a/y^2) dy
-2/b^2 integration of (1/y-a/y^2) dy
-2/b^2(log y + a/y) +c
-2/b^2(log|a+bcosx|+ a/a+bcosx + C
Attachments:
Similar questions