Math, asked by suryawolverine17, 1 month ago

Integrate sin⁶ 2x dx limit [0,π/4]​???​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that

\rm \longrightarrow \: I = \displaystyle \int_{0}^{ \dfrac{\pi}{4} } \rm \:  {sin}^{6} 2x \: dx

Now we use here, substitution method

\red{\rm :\longmapsto\:Put  \: 2x = y} \\ \red{\rm :\longmapsto\:2dx = dy} \\ \red{\rm :\longmapsto\:dx = \dfrac{dy}{2}}

When we use substitution method, we have to change the limits also.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y = 2x \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf \dfrac{\pi}{4}  & \sf \dfrac{\pi}{2}  \end{array}} \\ \end{gathered}

So, given integral reduced to

\rm \longrightarrow \: I = \displaystyle \int_{0}^{ \dfrac{\pi}{2} } \rm \:  {sin}^{6} y \: \dfrac{dy}{2}

\rm \longrightarrow \: I =  \dfrac{1}{2} \displaystyle \int_{0}^{ \dfrac{\pi}{2} } \rm \:  {sin}^{6} y \: dy

We know,

Walli's Formula, if n is even natural number,

\rm \longrightarrow\:\displaystyle \int_{0}^{ \dfrac{\pi}{2} } \rm \:  {sin}^{n} x \: dx =  \frac{(n - 1)(n - 3) -  -  - 1}{n(n - 2)(n - 4) -  - 2} \times  \dfrac{\pi}{2}

So, apply this formula, we get

\rm \longrightarrow \: I =  \dfrac{1}{2} \times  \dfrac{5.3.1}{6.4.2}  \dfrac{\pi}{2}

\rm \longrightarrow \: I = \dfrac{5\pi}{64}

Hence,

\rm \longrightarrow \:\displaystyle \int_{0}^{ \dfrac{\pi}{4} } \rm \:  {sin}^{6} 2x \: dx \:  =  \:  \dfrac{5\pi}{64}

Additional Information :-

1. If n is even natural number, then

\rm \longrightarrow\:\displaystyle \int_{0}^{ \dfrac{\pi}{2} } \rm \:  {sin}^{n} x \: dx =  \frac{(n - 1)(n - 3) -  -  - 1}{n(n - 2)(n - 4) -  - 2} \times  \dfrac{\pi}{2}

and

\rm \longrightarrow\:\displaystyle \int_{0}^{ \dfrac{\pi}{2} } \rm \:  {cos}^{n} x \: dx =  \frac{(n - 1)(n - 3) -  -  - 1}{n(n - 2)(n - 4) -  - 2} \times  \dfrac{\pi}{2}

2. If n is odd natural number, then

\rm \longrightarrow\:\displaystyle \int_{0}^{ \dfrac{\pi}{2} } \rm \:  {cos}^{n} x \: dx =  \frac{(n - 1)(n - 3) -  -  - 2}{n(n - 2)(n - 4) -  - 1}

and

\rm \longrightarrow\:\displaystyle \int_{0}^{ \dfrac{\pi}{2} } \rm \:  {sin}^{n} x \: dx =  \frac{(n - 1)(n - 3) -  -  - 2}{n(n - 2)(n - 4) -  - 1}

Similar questions