integrate sinx - cosx
kvnmurty:
integration of (sin x - cosx ) OR (sin x) (-cos x) = (-sin x cos x) ??? which one ?
Answers
Answered by
1
∫ sin(x)·cos(x) dx
Let u = sin(x)
Then du = cos(x) dx
∫ u du
= u²/2 + C
Reverse substitution:
= ½ sin²(x) + C
Answered by
0
[tex] \int\limits^a_b {(sin x - cos x)} \, dx
\int\limits^a_b {sin x} \, dx - \int\limits^a_b {cos x} \, dx
- cos x - sin x + C , where C is an integration constant
as d/dx cos x = sin x
d/dx sin x = cos x
[/tex]
Similar questions