Math, asked by chakravarthidchakri, 1 year ago

integrate sinx - cosx


kvnmurty: integration of (sin x - cosx ) OR (sin x) (-cos x) = (-sin x cos x) ??? which one ?

Answers

Answered by vivek2001
1
 \int\limits^a_b {(sinx-cosx)} \, dx
∫ sin(x)·cos(x) dx 

Let u = sin(x) 
Then du = cos(x) dx 

 ∫ u du 
= u²/2 + C 

Reverse substitution: 
= ½ sin²(x) + C 

veronica11: Good explanation. ★☆ ★ ☆ ★
Answered by kvnmurty
0
[tex] \int\limits^a_b {(sin x - cos x)} \, dx \int\limits^a_b {sin x} \, dx - \int\limits^a_b {cos x} \, dx - cos x - sin x + C , where C is an integration constant as d/dx cos x = sin x d/dx sin x = cos x [/tex]



Similar questions