Math, asked by vishu742000, 9 months ago

integrate sinx-cosx from 0 to pi/4

Answers

Answered by amitkumar44481
6

Correct Question :

  \tt\int\limits_{0}^{\frac{\pi}{4}} sin  \: x - cos \: x \: dx. \\

Answer :

√2 - 1.

Solution :

  \tt \mapsto\int\limits_{0}^{\frac{\pi}{4}} sin  \: x - cos \: x \: dx. \\

Let Apply Addition method, Write both separately.

  \tt \mapsto\int\limits_{0}^{\frac{\pi}{4}} sin  \: x \: dx - \int\limits_{0}^{\frac{\pi}{4}} cos \: x \: dx. \\

  \tt \mapsto[- cos \: x]_{0}^{\frac{\pi}{4}}  - [sin \: x]_{0}^{\frac{\pi}{4}}  \\

  \tt \mapsto[- cos \:{\frac{\pi}{4}   - ( - cos \:  0)]} - [sin {\frac{\pi}{4}   - (sin  \: 0)]} \\

  \tt\mapsto[ - \frac{1}{ \sqrt{2} }    + 1]- [ \frac{1}{{ \sqrt{2} } } - 0 ] \\

 \tt \mapsto1  -  \dfrac{1}{ \sqrt{2} }  -  \dfrac{1}{ \sqrt{2} }

 \tt \mapsto  \dfrac{ \sqrt{2}  - 1 - 1}{ \sqrt{2} }

 \tt \mapsto  \dfrac{ \sqrt{2}  - 2}{ \sqrt{2} }

 \tt \mapsto  \dfrac{ \sqrt{2}  - 2}{ \sqrt{2} }   \times  \dfrac{ \sqrt{2} }{ \sqrt{2} }

 \tt \mapsto  \dfrac{2 -  2\sqrt{2}}{ 2}

 \tt \mapsto  \dfrac{2(1 -  \sqrt{2}) }{2}

 \tt \mapsto  \dfrac{ \cancel{2}(1 -  \sqrt{2}) }{ \cancel2}

 \tt\mapsto  1 -  \sqrt{2} .

OR, Taking negative sign Common, We get.

 \tt \mapsto \sqrt{2}  - 1.

Therefore, the value of given integration is √2 - 1.

Similar questions