Math, asked by LivetoLearn143, 7 days ago

Integrate sqrt(e^x-1) dx​

Answers

Answered by Anonymous
22

Solution:-

We need to evaluate the integral,

 \displaystyle I =  \int \sqrt{ {e}^{x} - 1 } dx

Let's substitute  t = \sqrt{e^x-1}

 \implies  \sqrt{ {e}^{x} - 1 }  = t

Squaring both sides

 \implies  {e}^{x} - 1   =  {t}^{2} ...(1.)

Differentiation both sides

 \implies  {e}^{x} dx = 2 t \: dt

 \implies  dx =  \dfrac{2 t \: dt }{e^ {x}}

 {\implies  dx =  \dfrac{2 t \: dt }{ {t}^{2}  + 1} \qquad  \sf\left(using \: eq.1 \right)}

Now, we have :

 \displaystyle I =  \int \sqrt{ {e}^{x} - 1 } dx

Substitute for t and dx

 \implies \displaystyle I =  \int t. \frac{2t}{ {t}^{2}  + 1} dt

 \implies \displaystyle I = 2 \int \frac{ {t}^{2} }{ {t}^{2}  + 1} dt

 \implies \displaystyle I = 2 \int \frac{ {t}^{2}  + 1  - 1}{ {t}^{2}  + 1} dt

{ \implies \displaystyle I = 2 \left \{ \int \frac{ {t}^{2}  + 1  }{ {t}^{2}  + 1} dt  -  \int \frac{1}{ {t}^{2}  + 1} dt\right \}}

{ \implies \displaystyle I = 2 \left \{ \int dt  - \tan^{ - 1} t+ C\right \}}

{ \implies \displaystyle I = 2 \left \{ t - \tan^{ - 1} t+ C\right \}}

Substitute back value of t

{ \implies \displaystyle I = 2 \left \{  \sqrt{ {e}^{x} - 1 }  - \tan^{ - 1} ( \sqrt{ {e}^{x} - 1 } )+ c\right \}}

Therefore the required answer is,

 \underline{\boxed{ \displaystyle   \int \sqrt{ {e}^{x} - 1 } dx = 2 \left (  \sqrt{ {e}^{x} - 1 }  - \tan^{ - 1} ( \sqrt{ {e}^{x} - 1 } )+ c\right )}}

Formula used,

  • \boxed{\int dx = x + C}
  •  \boxed{\int \dfrac{1}{x^2+1} dx= \tan^{-1}x + C}
  •  \boxed{\frac{d}{dx} e^x = e^x}
  •  \boxed{\dfrac{d}{dx} x^n = nx^{n-1}}
Similar questions