Math, asked by varsha7557, 6 months ago

integrate sqrt (tanx)*sec^4 x dx​

Answers

Answered by Anonymous
24

AnswEr :

Given Integrand,

 \displaystyle \sf \int \sqrt{tan \: x}  {sec}^{4} x .dx

Let t = tan x

 \longrightarrow \sf \:  \dfrac{dt}{dx}  =  {sec}^{2} x \\  \\  \longrightarrow \sf \: dx =  \dfrac{dt}{ {sec}^{2}x }

Now,

 \implies \displaystyle \sf \int \sqrt{t}   \: {sec}^{4} x . \dfrac{dt}{ {sec}^{2}x }  \\  \\   \implies \displaystyle \sf \int \sqrt{t}   \: {sec}^{2} x .dt \\  \\    \implies \displaystyle \sf \int  \sqrt{t} ( {t}^{2}  + 1)dt \\  \\     \implies \displaystyle \sf \int  \sqrt{t} dt +  \int t^2 \sqrt{t} dt \\  \\   \implies \sf \:  \dfrac{2 \sqrt{t {}^{3} } }{3}  +  \dfrac{2 \sqrt{t} {}^{7}  }{7}  + c \\  \\ \implies \boxed{ \boxed{  \sf \:  \dfrac{2 \sqrt{(tan \: x) {}^{3} } }{3}  +  \dfrac{2 \sqrt{(tan \: x) {}^{7} } }{7}  + c}}

Answered by Anonymous
120

♣ Qᴜᴇꜱᴛɪᴏɴ :

\boxed{\bf{Integrate\:\::\int \sqrt{tanx}\:sec^4xdx}}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\boxed{\bf{\int \sqrt{\tan \left(x\right)}\sec ^4\left(x\right)dx=\tfrac{2}{3}\tan ^{\tfrac{3}{2}}\left(x\right)+\tfrac{2}{7}\tan ^{\tfrac{7}{2}}\left(x\right)+C}}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\sf{\int \sqrt{\tan \left(x\right)}\sec ^4\left(x\right)dx=\int \sec ^2\left(x\right)\sec ^2\left(x\right)\sqrt{\tan \left(x\right)}dx}

How ?

\sf{Apply\:\: the \:\:following\:\: algebraic\:\: property\:\:: x^{a}=x^{a-2} \cdot x^{2}}

\mathrm{Use\:the\:following\:identity}:\quad \sec ^2\left(x\right)=1+\tan ^2\left(x\right)

=\int \left(1+\tan ^2\left(x\right)\right)\sec ^2\left(x\right)\sqrt{\tan \left(x\right)}dx

\sf{Apply\: u\: -\: substitution\:: u=\tan (x)}

Integral Substitution definition :

\int \:f\left(g\left(x\right)\right)\cdot \:g^'\left(x\right)dx=\int \:f\left(u\right)du,\:\quad \:u=g\left(x\right)

\mathrm{Substitute:}\:u=\tan \left(x\right)

\dfrac{du}{dx}=\sec ^2\left(x\right)

      \Rightarrow \:du=\sec ^2\left(x\right)dx

      \Rightarrow \:dx=\frac{1}{\sec ^2\left(x\right)}du

=\int \left(1+u^2\right)\sec ^2\left(x\right)\sqrt{u}\dfrac{1}{\sec ^2\left(x\right)}du

\sf{\left(1+u^2\right)\sec ^2\left(x\right)\sqrt{u}\dfrac{1}{\sec ^2\left(x\right)} : \sqrt{u}\left(1+u^2\right)}

=\int \sqrt{u}\left(1+u^2\right)du

\sf{Expand\:\sqrt{u}\left(1+u^{2}\right): \sqrt{u}+u^{\dfrac{5}{2}}}

\text { Apply the distributive law: } a(b+c)=a b+a c

a=\sqrt{u},\:b=1,\:c=u^2

=\sqrt{u}\cdot \:1+\sqrt{u}u^2

=1\cdot \sqrt{u}+u^2\sqrt{u}

\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx

=\int \sqrt{u}du+\int \:u^{\frac{5}{2}}du

\int \sqrt{u}du = \dfrac{2}{3}u^\frac{3}{2}

\text { Apply radical rule: } \sqrt{a}=a^{\frac{1}{2}}

=\int u^{\frac{1}{2}} d u

\text { Apply the Power Rule: } \int x^{a} d x=\frac{x^{a+1}}{a+1}, \quad a \neq-1

=\dfrac{u^{\dfrac{1}{2}}+1}{\dfrac{1}{2}+1}

\int u^{\frac{5}{2}} d u=\frac{2}{7} u^{\frac{7}{2}}

=\frac{2}{3}u^{\frac{3}{2}}+\frac{2}{7}u^{\frac{7}{2}}

\mathrm{Substitute\:back}\:u=\tan \left(x\right)

=\frac{2}{3}\tan ^{\frac{3}{2}}\left(x\right)+\frac{2}{7}\tan ^{\frac{7}{2}}\left(x\right)

\sf{Add\:a\:constant\:to\:the\:solution}

\sf{=\dfrac{2}{3}\tan ^{\dfrac{3}{2}}\left(x\right)+\dfrac{2}{7}\tan ^{\dfrac{7}{2}}\left(x\right)+C}

\boxed{\boxed{\bf{\int \sqrt{\tan \left(x\right)}\sec ^4\left(x\right)dx=\tfrac{2}{3}\tan ^{\tfrac{3}{2}}\left(x\right)+\tfrac{2}{7}\tan ^{\tfrac{7}{2}}\left(x\right)+C}}}

Similar questions