Math, asked by kartikeyzopcart, 7 months ago

Integrate Tan^2x * sin^2x * dx

pls help to me find out​

Attachments:

Answers

Answered by RADJKRISHNA
3

hi friend,

here is your answer

please follow me friends

Answer:

∫sin(2x)tan(2x)dx=12∫sin2(2x)1−sin2(2x)cos(2x)d(2x)

Make the substitution sin(2x)=t⟹cos(2x)d(2x)=dt. Thus,

∫sin2(2x)1−sin2(2x)cos(2x)d(2x)=t21−t2dt

=∫11−t2dt−∫dt=12ln∣∣∣1+t1−t∣∣∣−t+C

hope it helps

if helps please follow me

Answered by kaushanimisra97
0

Answer:

The answer is \int\ tanx-3/2*x+sin2x/4+C

Step-by-step explanation:

  • To integrate the following equation we will follow the following steps:

                  =\int\tan^2sin^2 {x} \, dx=\int\sin^4 {x}/cos^2*dx

                  = \int\sin^2x(1-cos^2x/cos^2x). \, dx

                   =\int\ (sec^2x-1-1-cos2x/2). \, dx

                   =\int\ tanx-3/2*x+sin2x/4+C

Therefore, the answer is \int\ tanx-3/2*x+sin2x/4+C

For similar answers refer to the following:

https://brainly.in/question/3259157

https://brainly.com/question/27419605

#SPJ2

Similar questions