integrate tan^5 x sec^2 x dx
Answers
Answer:
tan⁶x / 6 + C
Step-by-step explanation:
To find ---> ∫ tan⁵x Sec²x dx
Solution--->
I =∫ tan⁵x Sec²x dx
= ∫ ( tanx )⁵ Sec²x dx
Let , tanx = t
Differentiating both sides we get,
=> Sec²x dx = dt
I = ∫ ( t )⁵ dt
= ∫ t⁵ dt
We have a formula ∫ xⁿ dx = xⁿ⁺¹ / ( n + 1 ) + C , applying it here we get,
= t⁵⁺¹ / ( 5 + 1 ) + C
= t⁶ / 6 + C
Putting t = tanx , we get,
I = tan⁶x / 6 + C
Additional information--->
1) ∫ 1 / x dx = logx + C
2) ∫ eˣ dx = eˣ + C
3) ∫ aˣ dx = aˣ / loga + C
4) ∫ Sinx dx = - Cosx + C
5) ∫ Cosx dx = Sinx + C
6) ∫ Secx tanx dx = Secx + C
7) ∫ Sec²x dx = tanx + C
8) ∫ Cosec²x dx = - Cotx + C
9) ∫ Cosecx Cotx dx = - Cosecx + C
Step-by-step explanation:
I think this will help you