Math, asked by junaid002, 1 year ago

integrate tan x/(log cos x)^2​

Attachments:

Answers

Answered by kaushik05
36

Here

we used substitution method

let

log cosx= t

we get

-tanx dx= dt

put tanx dx =- dt

and

log cosx = t

in Given integration :

Formula used :

   \bold{\boxed{\frac{d}{dx} cos \: x =  - sinx  \: }}

and

  \boxed{ \bold{\int \:   {x}^{y}  =  } \frac{ {x}^{y + 1} }{y + 1} }

soln refers to the attachment

Attachments:
Answered by Sharad001
70

Question :-

Integrate it .

 \rightarrow \sf{ \int  \:  \frac{ \red{ \tan(x)} }{ { (\:\green{log \cos(x) } \:)  }^{2} } } dx\\  \\

Answer :-

\rightarrow  \boxed{\sf{   \red{\frac{1}{ log \cos(x)  } } + c}} \\ \:

______________________________

Explanation :-

We used here substitution method of integration .

Firstly let,

 \rightarrow \sf{ \red{ log \cos(x) } \:  = k}  \:  \: .......(1)\\  \\  \sf{ \pink{differentiate \: with \: respect \: to \: x}} \\  \\ \rightarrow  \pink{\sf{ \frac{1}{ \cos(x) }  \frac{d}{dx}  \cos(x)}  =   \green{\frac{dk}{dx} }} \\  \\ \rightarrow \sf{ \green{ - \frac{ \sin(x) }{ \cos(x) }  }=  \red{ \frac{dk}{dx} } }\\  \\ \rightarrow \sf{ \pink{ -  \tan(x)  \: dx \:  }= dk} \\  \\ \rightarrow \boxed{ \sf{   \green{\tan(x)  \: dx \:  =  - dk}}}

_____________________________

Now put tan(x) dx = - dk in question,

\rightarrow \sf{  \red{ -  \int \: } \green{ \frac{dk}{ {k}^{2} }} } \\  \\  \rightarrow  \sf{   \pink{-  \int \: } \red{ {k}^{ - 2} \:  dk} }\\  \\ \rightarrow \sf{ -  \green{ \bigg( \frac{ {k}^{ - 2 + 1} }{ - 2 + 1}  \bigg)} }+ c \\  \\ \rightarrow \sf{   \pink{{k}^{ - 1} } + c} \\  \\ \rightarrow \sf{   \red{\frac{1}{k}  + c}}

From (1)

\rightarrow  \boxed{\sf{   \red{\frac{1}{  \green{log \cos(x)}  }}  + c}} \\

______________________________

Similar questions