Math, asked by Anonymous, 3 months ago

Integrate :- \displaystyle \bf \large\int\limits^1_0\dfrac{log (x+)}{x} dx

Answers

Answered by Anonymous
63

Answer:

GIVEN :-

\begin{gathered}\begin{gathered}\\ \bullet\:{ \bold{ \int \dfrac{\sqrt{x}}{1+x}\:dx}}\\ \\ \end{gathered}\end{gathered}

TO FIND :-

\begin{gathered}\\ \bf \bullet \: The \: Integrate\\ \\\end{gathered}

SOLUTION :-

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{  \int \frac{2 \:  {t}^{2} }{1 +  {t}^{2} } \: dt }} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2 \times   \int \frac{ {t}^{2} }{1 +  {t}^{2} }  \: dt}} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2 \times   \int \frac{ {t}^{2}  + 1 - 1}{1 +  {t}^{2} }  \: dt}} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2 \times   \int \frac{ {t}^{2}  + 1 }{1 +  {t}^{2} }  -  \frac{1}{1 +  {t}^{2} }  \: dt}} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2  \bigg(   \int \frac{ {t}^{2}  + 1 }{1 +  {t}^{2} } \:  dt -   \int\frac{1}{1 +  {t}^{2} }  \: dt} \bigg)} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2  \bigg( t  -   \int \frac{ 1 }{1 +  {t}^{2} } \:  dt  \bigg)}} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2 \bigg(t - arctan(t) \bigg)}} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2 \bigg( \sqrt{x}  - arctan( \sqrt{x} ) \bigg)}} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2  \sqrt{x}  - 2 \: arctan( \sqrt{x} \:  ) }} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies \large{ \boxed{ \bold{ 2  \sqrt{x}  - 2 \: arctan( \sqrt{x} \:  )  + C}}} \\\end{gathered} \\ \\\end{gathered}

Answered by Anonymous
103

A N S W E R :

  • {\sf{2\sqrt{x}\:-\:2\:arctan(\sqrt{x})\:+\;C}}

\\

Given :

  •  \displaystyle \sf \large\int\limits^1_0\dfrac{log (x+)}{x} dx

\\

To find :

  • Find The Integrate ?

\\

Solution :

\begin{gathered}\begin{gathered}\begin{gathered}\\ : \implies{ \sf{ \int \frac{2 \: {t}^{2} }{1 + {t}^{2} } \: dt }} \\ \\ \end{gathered}\end{gathered} \end{gathered}

~~~~~~~\begin{gathered}\begin{gathered}\begin{gathered}\\ : \implies{ \sf{ 2 \times \int \frac{ {t}^{2} }{1 + {t}^{2} } \: dt}} \\ \\ \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\\ : \implies{ \sf{ 2 \times \int \frac{ {t}^{2} + 1 - 1}{1 + {t}^{2} } \: dt}} \\ \\ \end{gathered}\end{gathered} \end{gathered}

~~~~~~~\begin{gathered}\begin{gathered}\begin{gathered}\\ : \implies{ \sf{ 2 \times \int \frac{ {t}^{2} + 1 }{1 + {t}^{2} } - \frac{1}{1 + {t}^{2} } \: dt}} \\ \\ \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\\ : \implies{ \sf{ 2 \bigg( \int \frac{ {t}^{2} + 1 }{1 + {t}^{2} } \: dt - \int\frac{1}{1 + {t}^{2} } \: dt} \bigg)} \\ \\ \end{gathered}\end{gathered} \end{gathered}

~~~~~~~\begin{gathered}\begin{gathered}\begin{gathered}\\ : \implies{ \sf{ 2 \bigg( t - \int \frac{ 1 }{1 + {t}^{2} } \: dt \bigg)}} \\ \\ \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\\ : \implies{ \sf{ 2 \bigg(t - arctan(t) \bigg)}} \\ \\ \end{gathered}\end{gathered} \end{gathered}

~~~~~~~\begin{gathered}\begin{gathered}\begin{gathered}\\ : \implies{ \sf{ 2 \bigg( \sqrt{x} - arctan( \sqrt{x} ) \bigg)}} \\ \\ \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\\ : \implies{ \sf{ 2 \sqrt{x} - 2 \: arctan( \sqrt{x} \: ) }} \\ \\ \end{gathered}\end{gathered} \end{gathered}

~~~~~~~:\implies{\underline{\boxed{\frak{\pink{2\sqrt{x}\:-\:2\:arctan(\sqrt{x})\:+\;C}}}}}

\\

~~~~\qquad\quad\therefore{\underline{\textsf{\textbf{Hence, Proved!}}}}

~~~~~~~~~~~~~~ _____________________

Similar questions