Math, asked by Anonymous, 5 months ago

Integrate  \displaystyle  {e}^{ax} sin(bx) \: and  \:  {e}^{bx} cos(ax)
using Euler's method. Brief on Euler's Method.

Thank you :)​

Answers

Answered by amitnrw
25

Given : \[\int{{{e}^{ax}}\sin \left( bx \right)}dx\]

To Find : integrate

Solution:

Assume that I is the integral of \[\int{{{e}^{ax}}\sin \left( bx \right)}dx\]

I=\[\int{{{e}^{ax}}\sin \left( bx \right)}dx\]  Eq1

Integrate using integration by parts

\[I={{e}^{ax}}\int{\sin \left( bx\right)}dx-\int{\left( \frac{d\left( {{e}^{ax}} \right)}{dx}.\left( \int{\sin \left( bx \right)}dx \right) \right)}dx\]

Use integration identity\[\int{\sin \left( ax \right)dx=-\frac{\cos \left( ax \right)}{a}+c}\]

I={{e}^{ax}}\frac{-\cos \left( bx \right)}{b}-\int{\left( a{{e}^{ax}}.\left( \frac{-\cos \left( bx \right)}{b} \right) \right)}dx+c \\  & \Rightarrow I=-{{e}^{ax}}\frac{\cos \left( bx \right)}{b}+\frac{a}{b}\int{{{e}^{ax}}\cos \left( bx \right)}dx+c \\ \end{align}

\[\begin{align}  & I={{e}^{ax}}\frac{-\cos \left( bx+c \right)}{b}-\int{\left( a{{e}^{ax}}.\left( \frac{-\cos \left( bx+c \right)}{b} \right) \right)}dx+c \\  & \Rightarrow I=-{{e}^{ax}}\frac{\cos \left( bx \right)}{b}+\frac{a}{b}\int{{{e}^{ax}}\cos \left( bx \right)}dx+c \\ \end{align}\]

Integrate using integration by parts

\[I=-{{e}^{ax}}\frac{\cos \left( bx \right)}{b}+\frac{a}{b}\left\{ {{e}^{ax}}\int{\cos \left( bx \right)}dx-\int{\left( \frac{d\left( {{e}^{ax}} \right)}{dx}.\left( \int{\cos \left( bx \right)}dx \right) \right)}dx \right\}+c\]

Use integration identity\[\int{\cos \left( ax \right)dx= \frac{\sin \left( ax \right)}{a}+c}\]

I=-{{e}^{ax}}\frac{\cos \left( bx \right)}{b}+\frac{a}{b}\left\{ {{e}^{ax}}\frac{\sin \left( bx \right)}{b}-\int{\left( a{{e}^{ax}}.\left( \frac{\sin \left( bx \right)}{b} \right) \right)}dx \right\}+C \\  & \Rightarrow I=-{{e}^{ax}}\frac{\cos \left( bx \right)}{b}+a{{e}^{ax}}\frac{\sin \left( bx \right)}{{{b}^{2}}}-\frac{{{a}^{2}}}{{{b}^{2}}}\int{{{e}^{ax}}\sin \left( bx \right)}dx+C \\ \end{align}

Substitute from Eq1I=\[\int{{{e}^{ax}}\sin \left( bx \right)}dx\]

\[I=-{{e}^{ax}}\frac{\cos \left( bx \right)}{b}+a{{e}^{ax}}\frac{\sin \left( bx \right)}{{{b}^{2}}}-\frac{{{a}^{2}}}{{{b}^{2}}}I+C\]

Multiply both sides by b2 and take I on left side

{{b}^{2}}I=-{{e}^{ax}}b\cos \left( bx \right)+{{e}^{ax}}a\sin \left( bx \right)-{{a}^{2}}I+C \\  & \Rightarrow {{a}^{2}}I+{{b}^{2}}I=-{{e}^{ax}}b\cos \left( bx \right)+{{e}^{ax}}a\sin \left( bx \right)+C \\  & \Rightarrow \left( {{a}^{2}}+{{b}^{2}} \right)I={{e}^{ax}}\left( a\sin \left( bx \right)-b\cos \left( bx \right) \right) \\ \end{align}

Divide both sides by  a² + b²

\[I=\frac{{{e}^{ax}}}{{{a}^{2}}+{{b}^{2}}}\left( a\sin \left( bx \right)-b\cos \left( bx \right) \right)+C\]

\[\int{{{e}^{ax}}\sin \left( bx \right)}dx\]=  \dfrac{{e}^{ax}}{{{a}^{2}}+{{b}^{2}}}\left( a\sin \left( bx \right)-b\cos \left( bx \right) \right)+C

Learn More:

integration x^4sin (x^5+6)

https://brainly.in/question/23787104

integrate x³-1/x³+x dx - Brainly.in

https://brainly.in/question/3017912

Answered by csingh296parihar
0

Answer:

☬If a=b^x ,\ b=c^y and \ c=a^z , then the value of x y z is equal to <br> a. 0 <br> b. 1 <br> c. -1 <br> d. a b c.

Similar questions