Math, asked by SharmaShivam, 9 months ago

Integrate :-
\displaystyle \int \dfrac{e^{2x}-2e^x}{e^{2x}+1}dx

Answers

Answered by Asterinn
13

\displaystyle \int \dfrac{e^{2x}-2e^x}{e^{2x}+1}dx

\displaystyle \int \dfrac{e^{2x}}{e^{2x}+1}dx - \displaystyle \int \dfrac{2e^{x}}{e^{2x}+1}dx

I1 = \displaystyle \int \dfrac{e^{2x}}{e^{2x}+1}dx

I2 = \displaystyle \int \dfrac{2e^{x}}{e^{2x}+1}dx

First we will solve first part :-

I1 = \displaystyle \int \dfrac{e^{2x}}{e^{2x}+1}dx

we will solve this by using substitution method :-

 {e}^{2x}  + 1 = t

2{e}^{2x} dx  = dt

I1 =  \frac{1}{2} \displaystyle \int \dfrac{dt}{t}

I1 =  log(t)  + c1

Where c1 is constant

Now put the value of t :-

I1 =  log({e}^{2x}  + 1)  + c1

Now we will solve the I2 :-

I2 = \displaystyle \int \dfrac{2e^{x}}{e^{2x}+1}dx

let \:  {e}^{x}  = m

 {e}^{x}dx  = dm

I2 =2 \displaystyle \int \dfrac{dm}{m^{2}+1}

I2 =2   \ {tan}^{ - 1} (m)  + c2

put the value of m now :-

I2 =2   \ {tan}^{ - 1} ( {e}^{x} )  + c2

Therefore the final answer is :- I1 - I2

 \frac{1}{2} log({e}^{2x}  + 1)   - 2   \ {tan}^{ - 1} ( {e}^{x} )   + c

[c = c1 + c2]

Answer :-

 \frac{1}{2} log({e}^{2x}  + 1)   - 2   \ {tan}^{ - 1} ( {e}^{x} )   + c

Answered by ManuAgrawal01
13

GIVEN :-

\begin{gathered}\begin{gathered}\begin{gathered}\\ \bullet\:{ \tt{ \int \dfrac{e^{2x}-2e^x}{e^{2x}+1}dx}}\\ \\ \end{gathered}\end{gathered}\end{gathered}

TO FIND :-

\begin{gathered}\begin{gathered}\\ \tt \bullet \: The \: Integrate\\ \\\end{gathered}\end{gathered}

SOLUTION :-

\begin{gathered}\begin{gathered}\begin{gathered}\\  : \implies{ \tt{ \int \dfrac{e^{2x}}{e^{2x}+1} -  \frac{2 {e}^{x} }{ {e}^{2x}   + 1} \: dx }}\\ \\ \end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\\  : \implies{ \tt{ \int \dfrac{e^{2x}}{e^{2x}+1} \: dx -   \int\frac{2 {e}^{x} }{ {e}^{2x}   + 1} \: dx }}\\ \\ \end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\\  : \implies{ \tt{  \frac{1}{2}  \times in \bigg( {e}^{2x} + 1 \bigg) - \int\frac{2 {e}^{x} }{ {e}^{2x}   + 1} \: dx }}\\ \\ \end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\\  : \implies{ \tt{  \frac{1}{2}  \times in \bigg( {e}^{2x} + 1 \bigg) - 2 \: arctan \bigg( {e}^{x}  \bigg) }}\\ \\ \end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\\ : \implies \large{ \boxed{ \tt{ \frac{1}{2}  \times in \bigg( {e}^{2x} + 1 \bigg) - 2 \: arctan \bigg( {e}^{x}  \bigg)  + C}}} \\\end{gathered} \\ \\\end{gathered}\end{gathered}  \\

Similar questions