Math, asked by Anonymous, 6 days ago

Integrate
\displaystyle \int\dfrac{\ln(x)}{x^3} dx

Answers

Answered by senboni123456
10

Step-by-step explanation:

We have,

\displaystyle \int\dfrac{\ln(x)}{x^3} dx

\displaystyle = \ln(x)  \int\dfrac{dx}{x^3}  -  \int \left[ \dfrac{d}{dx}( \ln(x)) \int \dfrac{dx}{ {x}^{3} }\right]dx \\

\displaystyle = \ln(x)  \cdot\dfrac{x ^{ - 2} }{ - 2}  -  \int \left[ \dfrac{1}{x} \cdot \dfrac{x ^{ - 2} }{  - 2 }\right]dx \\

\displaystyle =  - \dfrac{ \ln(x)  }{  2 {x}^{2} }   +  \dfrac{1}{2} \int \left[ \dfrac{1}{x} \cdot \dfrac{1 }{   {x}^{2} }\right]dx \\

\displaystyle =  - \dfrac{ \ln(x)  }{  2 {x}^{2} }   +  \dfrac{1}{2} \int \dfrac{dx}{{x}^{3} } \\

\displaystyle =  - \dfrac{ \ln(x)  }{  2 {x}^{2} }   +  \dfrac{1}{2} \dfrac{x^{ - 2} }{ - 2 }  + c\\

\displaystyle =  - \dfrac{ \ln(x)  }{  2 {x}^{2} }    -\dfrac{1}{  4 {x}^{2}  }  + c\\

Answered by diwanamrmznu
9

Solution:-

 \implies \int \:  \frac{ ln(x) }{x {}^{3} }  \\

we know that formula of

 \implies \pink{ \int \: f(x). \: g(x) \:  \: dx = f(x) \int \: g(x) -  \int( \frac{d}{dx}f(x ) \int \: g(x)} \\  \\

 \implies \:  ln(x)  \int \:  \frac{1}{x {}^{3} }  -  \int \: ( \frac{d}{dx}  ln(x)  \int \:  \frac{1}{x {}^{3} }  \\  \\  \implies \:  ln(x)  \frac{x {}^{ - 2} }{ - 2}   -  \int \:  \frac{1}{x}.x {}^{ - 2}   \frac{1}{ - 2}  \\  \\  \implies \:  ln(x)  \frac{1}{ - 2x {}^{2} }  +  \frac{1}{2}  \int \:  \frac{1}{x {}^{3} }

 \implies \:      ln(x)  \frac{1}{ - 2x {}^{2} }   +  \frac{1}{2}  \frac{x {}^{ - 2} }{ - 2}  \\  \\  \implies \:    - \frac{1}{2} ln(x)  \frac{1}{x {}^{2} }  -  \frac{1}{4} x {}^{ - 2}  + c

_________________________

thanks

Similar questions