Math, asked by SharmaShivam, 8 months ago

Integrate :-
\displaystyle \int \dfrac{\sqrt{x}}{1+x}\:dx

Answers

Answered by Asterinn
10

\displaystyle \int \dfrac{\sqrt{x}}{1+x}\:dx

We will solve the above problem of integration by using substitution method :-

let \:  \sqrt{x}  = t

(x =  {t}^{2} )

 {x}^{ \frac{1}{2} }  = t

 \dfrac{1}{2}  {x}^{ \frac{ - 1}{2} } dx = dt

 \dfrac{dx}{2 \sqrt{x} }  = dt

dx = 2 \sqrt{x} dt

dx = 2 t \: dt

Now , we get :-

\displaystyle \int \dfrac{2 {t}^{2}  \: dt}{1 +  {t}^{2} }\:dx

2\displaystyle \int \dfrac{ {t}^{2}   + 1 - 1\: }{1 +  {t}^{2} }\:dt

2\displaystyle \int \dfrac{ {t}^{2}   + 1 \: }{1 +  {t}^{2} }\:dt - 2\displaystyle \int \dfrac{ 1\: }{1 +  {t}^{2} }\:dt

2\displaystyle \int1 \:dt - 2\displaystyle \int \dfrac{ 1\: }{1 +  {t}^{2} }\:dt

2t - 2  {\tan}^{ - 1} (t)  + c

where c = constant

Now put t = √x

2\sqrt{x}   - 2  {\tan}^{ - 1} (\sqrt{x}  )  + c

_________________________

Learn more :-

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

______________________

Answered by ManuAgrawal01
37

GIVEN :-

\begin{gathered}\begin{gathered}\\ \bullet\:{ \bold{ \int \dfrac{\sqrt{x}}{1+x}\:dx}}\\ \\ \end{gathered}\end{gathered}

TO FIND :-

\begin{gathered}\\ \bf \bullet \: The \: Integrate\\ \\\end{gathered}

SOLUTION :-

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{  \int \frac{2 \:  {t}^{2} }{1 +  {t}^{2} } \: dt }} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2 \times   \int \frac{ {t}^{2} }{1 +  {t}^{2} }  \: dt}} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2 \times   \int \frac{ {t}^{2}  + 1 - 1}{1 +  {t}^{2} }  \: dt}} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2 \times   \int \frac{ {t}^{2}  + 1 }{1 +  {t}^{2} }  -  \frac{1}{1 +  {t}^{2} }  \: dt}} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2  \bigg(   \int \frac{ {t}^{2}  + 1 }{1 +  {t}^{2} } \:  dt -   \int\frac{1}{1 +  {t}^{2} }  \: dt} \bigg)} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2  \bigg( t  -   \int \frac{ 1 }{1 +  {t}^{2} } \:  dt  \bigg)}} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2 \bigg(t - arctan(t) \bigg)}} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2 \bigg( \sqrt{x}  - arctan( \sqrt{x} ) \bigg)}} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies{ \bold{ 2  \sqrt{x}  - 2 \: arctan( \sqrt{x} \:  ) }} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\\ : \implies \large{ \boxed{ \bold{ 2  \sqrt{x}  - 2 \: arctan( \sqrt{x} \:  )  + C}}} \\\end{gathered} \\ \\\end{gathered}

Similar questions