Math, asked by ItzHeartCrusher, 6 hours ago

Integrate

 \displaystyle \int \mathrm{ \bigg[sin (ax+b) cos(ax+b) \bigg] dx.}


Hoping For a Great answer :)

Don't spam !

Thank You! :)​

Answers

Answered by Anonymous
30

Given :-

 {\quad \leadsto \quad \displaystyle \int \sf \bigg\{ \sin ( ax + b ) \cos ( ax + b ) \bigg\} dx }

To Find :-

Value of the given indefinite integral

Solution :-

Consider ;

 {\quad \leadsto \quad \bf I = \displaystyle \int \sf \bigg\{ \sin ( ax + b ) \cos ( ax + b ) \bigg\} dx}

From Integration By Parts we knows that :-

 { \bigstar { \underline { \boxed { \red {  { \displaystyle \int \bf ( u \cdot v ) dx = \bf \displaystyle \bf u \int v \: dx - \int \bigg\{ \dfrac{du}{dx} \: \int v \: dx \bigg\} dx }}}}}}{\bigstar}

Now , Integrating by parts we have

 { : \implies \quad \bf I = \displaystyle \sf \sin ( ax + b ) \int \cos ( ax + b )  \: dx - \int \bigg[ \dfrac{d}{dx} \{ \sin ( ax + b ) \}  \: \int \cos ( ax + b ) \: dx \bigg] dx}

We knows that ;

 \quad \qquad { \bigstar { \underline { \boxed { \red {  { \bf \dfrac{d}{dx} \{ \sin x \} = \cos x }}}}}}{\bigstar}

Using this we have ;

 { : \implies \quad \bf I = \displaystyle \sf \sin ( ax + b ) \int \cos ( ax + b )  \: dx - \int \bigg[ \cos ( ax + b ) \times \dfrac{d}{dx} ( ax + b )  \times \: \int \cos ( ax + b ) \: dx \bigg] dx}

 { : \implies \quad \bf I = \displaystyle \sf \sin ( ax + b ) \int \cos ( ax + b )  \: dx - \int \bigg[ \cos ( ax + b ) \times \bigg\{ \dfrac{d}{dx} ( ax ) + \dfrac{d}{dx} ( b ) \bigg\} \times  \: \int \cos ( ax + b ) \: dx \bigg] dx}

Now , as Differentiation of a constant is 0 , so ;

 { : \implies \quad \bf I = \displaystyle \sf \sin ( ax + b ) \int \cos ( ax + b )  \: dx - \int \bigg[ \cos ( ax + b ) \times \bigg\{ a \times  \dfrac{d}{dx} ( x ) + 0 \bigg\}  \: \int \cos ( ax + b ) \: dx \bigg] dx}

 { : \implies \quad \bf I = \displaystyle \sf \sin ( ax + b ) \int \cos ( ax + b )  \: dx - \int \bigg[ a \cos ( ax + b )    \: \int \cos ( ax + b ) \: dx \bigg] dx}

We knows that ;

 \quad \qquad { \bigstar { \underline { \boxed { \red {  { \bf \displaystyle \int \bf \cos ( ax + b ) dx = \dfrac{\sin ( ax + b )}{a} }}}}}}{\bigstar}

Using this we have ;

 { : \implies \quad \bf I = \displaystyle \sf \sin ( ax + b ) \times \dfrac{\sin ( ax + b)}{a} - \int \bigg[ a \times  \cos ( ax + b ) \times \dfrac{\sin ( ax + b)}{a}  \bigg] dx}

 { : \implies \quad \bf I = \displaystyle \sf  \dfrac{\sin² ( ax + b)}{a} - \int \bigg[ \cancel{a} \times  \cos ( ax + b ) \times \dfrac{\sin ( ax + b)}{\cancel{a}}  \bigg] dx}

 { : \implies \quad \bf I = \displaystyle \sf  \dfrac{\sin² ( ax + b)}{a} -\displaystyle \int \sf \bigg\{ \sin ( ax + b ) \cos ( ax + b ) \bigg\} dx}

This can be written as ;

 { : \implies \quad  \bf I = \displaystyle \sf  \dfrac{\sin² ( ax + b)}{a} -\bf I}

 { : \implies \quad \bf I + I= \displaystyle \sf  \dfrac{\sin² ( ax + b)}{a} }

 { : \implies \quad \bf 2I = \displaystyle \sf  \dfrac{\sin² ( ax + b)}{a} }

 { : \implies \quad \bf I = \displaystyle \sf  \dfrac{\sin² ( ax + b)}{2a} + C }

 { \bigstar { \underline { \boxed { \red {  {  \therefore \bf \displaystyle  \int \bf \bigg\{ \sin ( ax + b ) \cos ( ax + b ) \bigg\} dx =\bf \dfrac{\sin² ( ax + b)}{2a} + C }}}}}}{\bigstar}

Similar questions