Math, asked by Anonymous, 1 day ago

Integrate

 \displaystyle \int   \tt{e}^{ - x} \:  dx \: for  \bigg[0, \infty  \bigg]

Answers

Answered by IamIronMan0
133

Answer:

1

Step-by-step explanation:

 \red {\huge\int _{0} ^{ \infty }  {e}^{ - x} \: dx } \: \\  \\  =- {e}^{ - x} \:  0\: to\: \infty \\  \\  =  - ( {e}^{ -  \infty } -  {e}^{0} ) \\ \\  = - 1 (0 - 1)  \\  \\  = 1

Answered by Anonymous
297

Answer:

 \large \dag Question :-

Integrate ,

 \displaystyle \int \tt{e}^{ -x} \: dx \: for \bigg[0, \infty \bigg]

 \large \dag Answer :-

 \sf\tt\large{\red {\underline {\underline{⚘\;The \;value \;of \;the \;given \;integration \;is \;1:}}}}

 \large \dag Solution:-

 \displaystyle \int \:0 \;to \infty \tt{e}^{ -x} \: dx \: for \bigg[0, \infty \bigg]

which can also be written as,

  •  \displaystyle \int \:0 \;to \infty \tt{e}^{ -x} \:dx]

  •  - ( {e}^{ -  \infty }  -  {e}^{0})

  • -1 (0-1)

  • =+1.

Hope it helps u mate .

Thank you .

Similar questions