Math, asked by priyanshijain69, 1 month ago

integrate

 {e}^{x} ( {a + b {e}^{x}) }^{6} \:.dx

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\sf  {e}^{x} \:  {(a + b{e}^{x})}^{6} \: dx -  -  - (1)

We use here method of Substitution,

 \red{\rm :\longmapsto\:Put \:a + b {e}^{x} = y}

On differentiating both sides w. r. t. x, we get

 \red{\rm :\longmapsto\dfrac{d}{dx} \: (a + b{e}^{x})=\dfrac{d}{dx} y}

 \red{\rm :\longmapsto \:b {e}^{x} =\dfrac{dy}{dx}}

 \red{\rm :\longmapsto \: {e}^{x}dx = \dfrac{dy}{b} }

So, equation (1) can be rewritten as

\rm :\longmapsto\:\displaystyle\int\sf   \:  { \pink{(a + b{e}^{x})}}^{6} \:  \red{{e}^{x} \: dx}

 \rm \:  \:  =  \:\dfrac{1}{b}  \displaystyle\int\sf  {y}^{6} \: dy

 \rm \:  \:  =  \:\dfrac{1}{b} \:  \times  \dfrac{ {y}^{6 + 1} }{6 + 1} + c

 \rm \:  \:  =  \: \dfrac{ {y}^{7} }{7b} + c

 \rm \:  \:  =  \: \dfrac{ {(a + b {e}^{x}) }^{7} }{7b} + c

Hence,

\bf :\longmapsto\:\displaystyle\int\bf  {e}^{x} \:  {(a + b{e}^{x})}^{6} \: dx  = \dfrac{ {(a + b{e}^{x})}^{7} }{7b} + c

Formula Used :-

 \red{ \boxed{ \sf{ \dfrac{d}{dx}k = 0\: }}}

 \red{ \boxed{ \sf{ \dfrac{d}{dx}{e}^{x} = {e}^{x}\: }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf  {x}^{n}dx =  \frac{ {x}^{n + 1} }{n + 1}+ c}}}

Additional Information :-

 \red{ \boxed{ \sf{ \displaystyle\int\sf \dfrac{1}{x}\: dx =  log(x)  + c}}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf cosx \: dx = sinx + c }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf sinx \: dx =  -  \: cosx + c }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf secx  \: tanx\: dx =  \: secx + c }}}

 \red{ \boxed{ \sf{ \:\displaystyle\int\sf cosecx  \: cotx\: dx =  -  \: cosecx + c }}}

 \red{ \boxed{ \sf{ \: \displaystyle\int\sf tanx \: dx \:  =  log(secx) + c }}}

 \red{ \boxed{ \sf{ \: \displaystyle\int\sf cotx \: dx \:  =  log(sinx) + c }}}

 \red{ \boxed{ \sf{ \: \displaystyle\int\sf cosecx \: dx \:  =  log(cosecx - cotx) + c }}}

 \red{ \boxed{ \sf{ \: \displaystyle\int\sf secx \: dx \:  =  log(secx  + tanx) + c }}}

Similar questions