Math, asked by Atαrαh, 4 months ago

Integrate:-


I= \displaystyle \int \dfrac{(x + 1)}{(x + 2)(x + 3)}dx

Solve the question and please explain each step properly.​

Answers

Answered by shadowsabers03
143

Given to evaluate,

\displaystyle\longrightarrow I=\int\dfrac{x+1}{(x+2)(x+3)}\ dx\quad\quad\dots(1)

Let,

\longrightarrow\dfrac{x+1}{(x+2)(x+3)}=\dfrac{A}{x+2}+\dfrac{B}{x+3}

\longrightarrow\dfrac{x+1}{(x+2)(x+3)}=\dfrac{A(x+3)+B(x+2)}{(x+2)(x+3)}

\longrightarrow x+1=(A+B)x+(3A+2B)

Equating corresponding coefficients,

  • A+B=1
  • 3A+2B=1

Solving them, we get,

  • A=-1
  • B=2

Then (1) becomes,

\displaystyle\longrightarrow I=\int\left(\dfrac{-1}{x+2}+\dfrac{2}{x+3}\right)\ dx

\displaystyle\longrightarrow I=-\log|x+2|+2\log|x+3|+C

\displaystyle\longrightarrow\underline{\underline{I=\log\left|\dfrac{(x+3)^2}{x+2}\right|+C}}


BrainlyIAS: Awesome ❤️♥️ !
Asterinn: Perfect!
Saby123: Awesome !
Answered by Rajshuklakld
90

\

\int \frac{(x + 1)}{(x + 2)(x + 3)}  \\  \frac{(x + 1)}{(x + 2)(x + 3)}  =  \frac{a}{(x + 2)}  +  \frac{b}{(x + 3)}  \\  \frac{x + 1}{(x +2 )(x + 3)} =  \frac{3a + ax + bx + 2b}{(x + 2)(x + 3)}  \\ cancell \: out \: denominator \\ x + 1 = x(a + b) + 3a  +  2b \\ on \: comparing \: both \: term \:   \: we \: get \\ a + b = 1 \:  \: (coef.of \: x \: is \: 1) \\ or \: a = 1 - b \\ 3a  +  2b = 1 \\ putting \: value \: of \: b \: we \: get \\ 3(1 - b)  +  2b = 1 \\ b = 2 \: and \: a =  - 1 \\ putting \: the \: value \: we \: get \\  \frac{(x + 1)}{(x + 2)(x + 3)}  =  \frac{ - 1}{(x + 2)}  +  \frac{2}{(x + 3)} \\ apply \: integration \: both \: side \\  \int \:  \frac{(x + 1)}{(x + 2)(x + 3)} = \int \frac{ - 1}{(x + 2)}  +  \int \frac{2}{x + 3}  \\  \int \:  \frac{(x + 1)}{(x + 2)(x + 3)} =  - log |x + 2|  + 2log |x + 3|  + c


BrainlyIAS: Write final answer in simplified form ! Meanwhile, Nice answer ! ♥️
Asterinn: Nice!
Saby123: Wonderful !
Similar questions